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Foreword

I am glad to write this foreword for this book, which is a result of the collab-
orative research carried out by CoreGRID, the only one Network of Excellence
in Grid and P2P technologies funded by EU 6th Framework Programme. The
mission, assigned to CoreGRID by the European Commission, was to build
a research community in Europe to gather the expertise and the know-how of
researchers in various research fields related to Grid and P2P into a single entity.
After three years of existence, CoreGRID has successfully established a coher-
ent research agenda avoiding duplication of efforts and providing a critical mass
of researchers to address Grid research challenges. One of these challenges is
how to build Next Generation Grid middleware systems and services. It was
the goal of two workshops organized in 2007 by CoreGRID leaders. The first
one was held in Dresden, in conjunction with the ISC’07 conference, on June
2007. This workshop had a particular focus on Knowledge and Data Manage-
ment, Resource Management and Scheduling and Information, Resource and
Workflow Monitoring Services. The second one was held in Austin in in con-
junction with the Grid 2007 conference, on September 2007. This workshop
was focused on Service Level Agreements (SLAs).

I would like to take this opportunity to express my gratitude to the organizers
of those workshops as well as to all contributors. I wish you a good reading.

Thierry Priol, CoreGRID Scientific Co-ordinator



Preface

The CoreGRID Network of Excellence includes a large number of scientists
working to achieve high-level research objectives in Grid and P2P systems.
CoreGRID brings together a critical mass of well-established researchers from
more than forty European institutions active in the fields of distributed systems
and middleware, models, algorithms, tools and environments.

Grid middleware and Grid services are two pillars of Grid computing systems
and applications. Currently a large number of Grid researchers and developers
are providing solutions in both those areas.

This book is the eighth volume of the CoreGRID series and it brings together
scientific contributions by researchers and scientists working on knowledge and
data management on Grids, Grid resource management and scheduling, Grid in-
formation, resource and workflow monitoring services, and service level agree-
ments. The book includes revised contributions presented at two workshops
organized in 2007 by CoreGRID leaders. The first one was held in Dresden in
conjunction with the ISC’07 conference, on June 2007, and it was focused on
middleware. The second one was held in Austin in conjunction with the Grid
2007 conference, on September 2007. This workshop was focused on Service
Level Agreements (SLAs).

The book includes four parts addressing respectively Resource Management
and Scheduling, Storage and Data Management, Workflow and Fault Toler-
ance, and Service Level Agreement. All those parts are concerned with key
topics in the area Grid computing. They provide a general view of the main
challenges and significant solutions in implementing complex applications in a
Grid computing scenario.

The first part includes ten chapters. The first one presents Grid scheduling
techniques with the ATOP-Grid. The second chapter discusses benchmarking
of Grid applications. In the third chapter is presented a data model for de-
scribing Grid broker capabilities. The fourth chapter of this part discusses a
meta broker for future generation Grids. A chapter discussing scheduling and
replication in the LHC Grid follows. The sixth chapter presents Grid session
monitoring techniques and chapter seven presents delegating contracts for re-
source discovery. A meta-brokering approach is described in chapter eight.



xii Preface

Chapter nine discusses preemption in parallel job scheduling and chapter ten
discusses a scheduling architecture based on data mining prediction techniques.

The Storage and Data Management part includes five chapters. The first
chapter presents a super peer architecture for public resource computing on
Grids. Chapter two surveys security services in Grid storage systems. Chapter
three of this part analyzes architectures for Grid storage elements. Chapter four
addresses Grid information system issues and solutions. Finally, chapter five
presents a metadata management system for knowledge discovery applications.

The third part includes six chapters discussing key topics in Grid workflow
and fault tolerance. The first chapter describes taxonomies of the multi-criteria
Grid workflow scheduling problem. The next chapter discusses workflow sup-
port in the ASKALON environment. Chapter three presents a practical ap-
proach for workflow management in Grids. Chapter four presents a fault tol-
erant framework with mobility support. Chapter five discusses checkpointing
for fault tolerance and migration in Grids. Finally, the last chapter of part III
describes a machine learning approach for automated diagnosis of faults.

The last part of the book includes seven contributions on Service Level Agree-
ments (SLAs) in Grids. The first chapter presents a survey on current use of
SLAs for Resource Management and scheduling. The second chapter addresses
penalties in SLAs as a possibility to manage violations in SLAs. The third chap-
ter reports on using bipartite SLAs for creating and operating dynamic Virtual
Organisations. The fourth chapter introduces performance contracts for hierar-
chical component applications to meet the user expectations with respect to QoS
while identifying the minimal set of resources required. The fifth chapter de-
scribes the experience of using SLAs within the context of a Catallaxy-enabled
proof-of-concept prototype. The sixth chapter reports on the Implied Volatility
framework developed in the European NextGRID project applying dynamic
SLAs to improve business opportunities. The seventh chapter presents results
of experiments with a first implementation of a negotiation service for SLAs in
a Globus Toolkit 4 environment.

We would like to thank all the participants for their contributions to making
the two workshops a success, the workshop program committees for reviewing
the submissions, and all the authors that contributed chapter for publication in
this volume. A special thank to the Springer staff, Vladimir Getov and Paolo
Trunfio for their assistance in editing the book.

Our thanks also go to the European Commission for sponsoring under grant
number 004265 this volume of the CoreGRID project series of publications.

Domenico Talia, Ramin Yahyapour, Wolfgang Ziegler



Contributing Authors

Ali Anjomshoaa EPCC, University of Edinburgh, Edinburgh, EH9 3JZ, United
Kingdom (ali@epcc.ed.ac.uk)

Gabriel Antoniu IRISA/INRIA, Rennes Cedex, France
(gabriel.antoniu@irisa.fr)

Oscar Ardaiz Department of Mathematics and Informatics, Public Uni-
versity of Navarra Campus de Arrosadia, Pamplona 31006, Spain
(oscar.ardaiz@unavarra.es)
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RESOURCE MANAGEMENT AND SCHEDULING



GRID SCHEDULING WITH
ATOP-GRID UNDER TIME SHARING

Xijie Zeng, Jiaying Shi, Xiaorong Cao, and Angela C. Sodan
University of Windsor
Computer Science, 401 Sunset Ave., Windsor, Ontario, N9B3P4
Canada
zengx@uwindsor.ca

shiv@uwindsor.ca

caoi@uwindsor.ca

acsodan@uwindsor.ca

Abstract ATOP-Grid is an adaptive middleware which supports workload redistribution
under varying resource allocation in both the space and time dimensions. In
earlier work [13] [14] [15], we have already shown that time-shared execution
of jobs, which splits the CPUs or cores per node between two jobs but shares
the network, may provide a performance benefit vs. space sharing, which splits
the nodes among the jobs. In this paper, we make a step towards providing a
sounder foundation for time-sharing performance, investigating the time sharing
behavior of jobs in more detail and looking into communication characteristics,
memory access, and cache usage.

Keywords: Parallel job scheduling, multi-core CPUs, hyperthreaded CPUs, time sharing,
cache locality



4 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

1. Introduction
Our ATOP-Grid (Adaptive Time/Space Sharing through Over Part itioning)

middleware is an approach for application-internal grid scheduling. This means
that ATOP-Grid supports the application in internally adjusting its workload dis-
tribution on the grid according to the external conditions. The application may
be scheduled on a single site or simultaneously across multiple sites. ATOP-
Grid can run under different resource-allocation approaches. This means that
ATOP-Grid is designed to execute under both time sharing and space sharing, to
switch between time and space sharing, and to dynamically adapt its workload
distribution to varying resource allocation in the time and space dimension.
These possibilities for adaptation give the grid scheduler and local schedulers
more flexibility to deal with advanced reservations.

The standard approach to allocate resources to jobs on parallel machines
is dedicated resource allocation (space sharing), which assigns the individual
nodes of a parallel machine exclusively to a single application. However, better
resource utilization may be obtainable if letting jobs with complementary re-
quirements run on the same nodes and share the resources per node. We apply
a modified time-sharing approach which allocates the different CPUs, cores,
or virtual CPUs to different jobs in a dedicated manner and time-shares the
remaining resources: memory, disk, and network. We have obtained promising
results from running combinations of NAS benchmarks together on different
virtual CPUs of the same hyperthreaded CPU (CPU hyper sharing) [13] [16].
In this case, the processes also need to share the execution units and the cache
per physical CPU. Nevertheless, most combinations of the NAS benchmarks
ran with improved resource utilization though some pairs had too many con-
flicts on cache and/or network. Thus, the corresponding job scheduler selected
pairs carefully and matched jobs with complementary resource needs, thereby
gaining improvements in response-times of up to 50%. Similar scheduling
options exist on multi-core CPUs (multi-core sharing) which are the current
dominant trend for compute resources on cluster nodes [19]. Multi-core CPUs
have separate execution units and may or may not share the cache. The results
in [19] were positive but did not consider communication as the tests were
carried out with a very small number of nodes (up to 4). The simplest option is
to split the CPUs per SMP node among multiple jobs (node sharing).

We ran our own ATOP-Grid middleware successfully under CPU hyper shar-
ing and node sharing with larger numbers of nodes involved (up to 64) [14] [15].
Though we have obtained positive results, we have only tested a Jacobi applica-
tion with nearest-neighbor communication and did not look into cache effects.
The performance model used was very simple. However, different commu-
nication patterns may play a role for time-sharing performance. Cache needs
of a program are hard to determine as practically available compilers do not
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provide such information. In this paper, we make a step towards providing
a sounder basis for time-sharing performance and investigate different com-
munication patterns and communication ratios, potential memory-bandwidth
problems, and cache performance. Understanding the effects is not only im-
portant to determine whether jobs can be run under time sharing but also to be
able to switch between different resource allocation options in the middleware
with predictable and consistent performance [14].

2. Related work
Testing memory performance with consideration of different access

patterns—consecutive, stride, and random access—was proposed in the mem-
perf benchmark [18]. The performance of multi-core AMD Opteron processors
was already investigated in [10] which tested integer and float SPEC2000 per
node as well as the parallel Linpack benchmark. In addition, memory latency
was measured. All tests were done as comparison between single-core and
multi-core Opteron processors. The Linpack results showed a performance im-
provement of 85% by using dual-core processors. However, the results obtained
from the memory tests and from the SPEC2000 benchmarks were converse to
the expectations, providing better performance for the dual-core version with
memory competition. Thus, the presented results are inconclusive.

Time sharing is a well known option to increase resource utilization for
serial job execution. However, parallel jobs need coordinated execution across
machine nodes because otherwise processes/threads may be idle while waiting
for communication or too many context switches may occur (for a survey of
existing research, see [15]). Using different virtual CPUs, cores, or CPUs per
node to execute different applications is an easier way for coordinated execution
because all threads/processes are always active. In [17], we have presented
results from time sharing applications with different communication patterns
on an SMP machine and shown that the effect on the jobs depends on the jobs’
communication patterns and their combination.

Application-internal grid scheduling with the aim of making an application
adaptive was first introduced in AppLeS [2].

3. Time-sharing options and slowdown under time sharing
As mentioned in the introduction, we exploit 1) node sharing (splitting the

CPUs per job), multi-core sharing (splitting the cores per CPU), and CPU hyper
sharing (splitting the virtual CPUs per hyperthreaded CPU). In all cases, the
network, memory, and disk are shared. On a hyperthreaded CPU, also the
execution units and all caches are shared. The cores of a multi-core CPU have
their own execution units and their own L1 cache, and, depending on the CPU
type, may (e.g. IBM Power 5) or may not (e.g. Opteron [9] ) share the L2
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cache. The potential L3 cache is typically shared. Typically the cores share
the access to the memory. Similar to multiple CPUs per node (see, e.g. [1]),
this can create bottlenecks for programs with low cache locality. This problem
would increase with the trend toward larger numbers of cores per CPU.

Whenever processes share resources, this may result in competition for re-
source access and lead to the application running slower than it would run on
its own. Note that unless the slowdown is very high, still a benefit may be
obtained vs. sequential execution of the jobs. We define slowdown as the
relation between the runtime T(A,B) of Job A under shared execution with
another Job B vs. the runtime T(A) of Job A under dedicated resource al-
location, i.e. SL(A, B) = T (A, B)/T (A). Note that the two jobs sched-
uled together may experience different slowdowns, i.e. in the general case,
SL(A, B) �= SL(B, A). If in our tests one application runs longer than the
other one, we calculate the slowdown for the shared execution time. The ap-
plication then runs slower by (SL(A, B) − 1) ∗ 100%.

4. ATOP-Grid
Our ATOP-Grid is designed to run with the Globus grid middleware and

the MPICH-G2 communication library which are proven to work on the Tera-
Grid for very large applications [5]. ATOP-Grid employs the Zoltan/ParMeTis
load-balancing library [4] for the workload redistribution and supports over-
partitioning (creating more data partitions via Zoltan than nodes/CPUs are used
and flexibly allocating the partitions to the nodes/CPUs) to minimize workload
redistribution cost. ATOP-Grid permits making reservations for a certain ex-
ecution power (runtime) rather than a certain number of CPUs [14]. The job
scheduler can decide the resource allocation and possibly dynamically switch
between time sharing and space sharing as it is best for the overall schedule (fit-
ting into the machine, scheduling around reservations, better utilization, etc.).

ATOP-Grid can then adjust to any possible resource allocation. This ap-
proach provides more flexibility in choosing the best resource utilization and
meeting reservations, while helping to decrease the reservations’ negative im-
pact [12] on the response times of other jobs. If time sharing works well, the
resource allocation (NA,B) to obtain the same runtime is less for the time-
shared execution of two jobs than would be the sum of the resource allo-
cations NA and NB under space sharing, i.e. NA,B < NA + NB , while
T (A, B, NA,B) = T (A, NA). Conversely, we can keep the overall number of
resources the same (NA,B = NA + NB) and may obtain a better runtime on
the larger number of resources under time sharing than on part of the resources
under space sharing, i.e. T (A, B, NA,B) < T (A, NA). See Figure 1.
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Figure 1. Resource allocation under time sharing with NA,B nodes for both A and B vs.
resource allocation under space sharing with NA nodes for A and NB for B.

5. ATOP-Grid under node and CPU hyper sharing—Time
vs. space adaptation

We ran tests on 64 dual-Opteronnode clusters in the Sharcnet network of
clusters [1]. Since the Sharcnet job scheduler currently does not support run-
ning two jobs on the same resources, the tests with ATOP-Grid were run with
manual support of the system administrator. Some additional tests were done
on a 16-node cluster with 2 Ghz Intel Xeon hyperthreaded CPUs. In all cases,
the interconnect was Myrinet and the communication library was MPICH-GM.
To have controlled test conditions, the threads were explicitly bound to specific
CPUs, specific cores, or specific virtual CPUs per node (using setschedaffin-
ity()).

First we show results which we obtained for ATOP-Grid in [14] and [15]
with node sharing and CPU hyper sharing, see Figure 2 and Figure 3. The
application is Jacobi which uses nearest neighbor communication along the edge
cuts created by an underlying graph. The application was run with different
graphs, and the different instances are labeled in the figure with the names of
these graphs. From Figure 2 we see that we got the same runtime under
time sharing with less than double the nodes used under space sharing, i.e.
obtained better resource utilization. In Figure 3 we see that conversely the
runtime increased vs. time sharing if applying space sharing and giving each
application half of the nodes.

For these tests, the slowdowns shown include the partitioning of the local
CPUs per node. In other words, the option is to either run two threads of one
application per node on two CPUs (dedicated allocation), or only one applica-
tion thread on one CPU and the second application’s thread on the second CPU
(node sharing or CPU hyper sharing). In the latter case, the CPU computation
time approximately doubles but we still get a benefit because we better utilize
the network (serial execution corresponds to a factor of 2 and any slowdown
below 2 means an improvement in utilization).
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Figure 2. Resource usage under space sharing and time sharing as required to keep the same
progress/remaining runtime and meet the execution-power reservation. The coscheduled appli-
cation is mentioned in parenthesis. Left graphic shows tests on 16 nodes, right graphic tests on
64 nodes.

0

10

20

30

40

50

60

70

80

90

br
ac

k2

fe
_o

ce
an

br
ac

k2
wing

wav
e

59
8a

fe
_r

ot
or

wav
e

T
im

e 
(in

 s
ec

s)

Runtime with Dedicated Resource Allocation
Runtime with Node/CPU Sharing  

SL 1.75 1.44 1.82 1.57 1.69 1.65 1.60 1.65 
 

Figure 3. Runtimes on 16 nodes under CPU hyper sharing (brack2/fe ocean and brack2/wing)
and on 64 nodes under node sharing (598a/wave and fe rotor/wave) vs. runtimes for the same
applications under dedicated resource allocation on half of the nodes. We also show the slowdown
if coscheduling the applications vs. dedicated execution on all nodes.

6. Sharing the network—The effect of communication
patterns

We now go on presenting tests targeted to investigate the effects of different
communication patterns under time sharing. MPICH-GM uses buffered com-
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munication for messages of size < 32k and synchronous communication for
larger messages.

In this case, we have delt with the lack of scheduler support to run 2 jobs on the
same nodes by simulating resource sharing. We created two processes per node
and split the overall set of processes into two communicator groups such that
one process per node belongs to one of the two communicator groups and the
other process to the other group. Each communicator group then represents an
"application". However, this setup permitted only tests with synthetic programs
but not to run benchmarks like NAS, LinPack, or Stream [7]. We used synthetic
programs which employed different and common communication patterns as
described below:

Central: a master periodically receives messages from all its slaves (n:1),
with the slaves not waiting for the master to have received all slaves’
messages

Nearest neighbor (NN): processes communicates with four geometric
neighbor processes periodically, while both sending and receiving mes-
sages to/from each neighbor

Pipeline: the processes send messages to their right neighbors and receive
messages from their left neighbors; the first process does not receive and
the last process does not send

Broadcast: a collective MPI communication among which sends the
same data to all other processes (1:n)

Alltoall: a collective MPI communication which exchanges data among
all processes (n:n)

Random: processes send messages to randomly selected other processes;
also computation varies randomly by +/-30%. The receiver probes for
incoming messages. This pattern only works for 10k message sizes with
buffering because the asynchronous / random nature of computation and
communication.

We configured the synthetic test programs to use message sizes of either 10k
(buffered communication) or 100k (synchronous communication). The test
programs are iterative, alternating (one round of) communications and (low-
memory-usage) computation. We set the computation such that the communi-
cation percentage of the overall runtime is either 30% or 50% (the communica-
tion time was first measured independently, including all wait times resulting
from dependencies in the patterns). We kept the communication percentage
constant to investigate communication independent of the scalability of the ap-
plication. All communication was blocking. In all cases, each application used
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1 CPU per node, whether running under time sharing or on its own, i.e. we
investigated the network sharing only. If an application would apply multi-
threading per node and use both CPUs of a dual node (like ATOP-Grid, cf.
Section 5), the computation time would be doubled under time sharing since
it means splitting CPU resources. Thus, for the synthetic programs presented
here, the projected original communication percentages under space sharing
with full node-resource usage would be 46% (30% under time sharing) and
67% (50% under time sharing)—which is very high. This means that we have
tested upper bounds regarding communication percentages.

Table 1 and Table 2 show the results of our measurements. All results with
runtime increases over 10% are marked in bold as these are the only values
that appear to be relevant at all. Results which represent more serious runtime
increases over 50% have grey background.

We see that most patterns scheduled very well together (zero or very small
relative increase in runtime). However, Central disturbed other patterns on 64
nodes with 50% communication, especially if the message size was 10k. The
worst slowdown in this case is for NN. With message size 100k, only Alltoall—
and to some extent Central if coscheduled with itself—suffered. Alltoall with
both 10k and 100k message sizes on 32 and 64 nodes makes Pipeline, NN, and
itself suffered if the communication percentage was 50%. We also observe that
NN was most sensitive to coscheduling with any other pattern if the message
size is 10k and the communication percentage was 50%.

Regarding scalability, slowdowns increased with larger number of nodes if
the communication percentage was 50%, especially if the message size was
10k. This is no surprise as with larger numbers of nodes the probability for
conflict on the network increases. However, in many cases, slowdown was
still acceptable. For 30% communication, slowdowns were still low on 64
nodes, i.e. scalability was very good. Note that 30% (corresponding to 46%
communication time if using all node resources under space sharing) is already
very high and typically the maximum, i.e. many real parallel programs with
lower percentages are likely to behave significantly better.

Finally, we ran some tests on a different cluster with Quadrics Elan4 in-
terconnect. We found that communication is significantly faster (by 69% for
Central, 26% for Pipeline, 48% for NN, 42% for Random, 81% for Broadcast
and 62% for Alltoall if the message size was 10k; by about 27.5% for Central,
Pipeline, and NN, 94% for Broadcast, and 71% for Alltoall if the message size
was 100k). However, we have adjusted the test programs to obtain the same
communication percentage. The results are shown in Table 3.

The slowdowns with the faster network were higher because the message
frequency becomes higher if the same communication percentage is kept. How-
ever, the results are still acceptable except Broadcast which imposed extreme
slowdowns. Thus, if an application relies dominantly on this communication
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Table 1. Runtime increases under node sharing with different combinations of communication
patterns and different communication percentages, and either 8, 32, or 64 cluster nodes. Message
size is 10k. Left number in cell is increase for row application and right number in cell is increase
for column application.

 Central 

 50% 30% 

 8 32 64 8 32 64 

Central 0.3 / 0.3 

 

 

28.7 / 28.7 

 

23.9 /23.9 0.8 / 0.8 0.0 / 0.0 0.8 / 0.8 

NN 0.2 / 0.1 46.6 / 7.5 716.8 /4.6 1.6 / 0.1 18.3 / 1.5 14.2 / 0.0 

Pipeline 2.9 / 0.5 8.1 / 1.9 274.5/ 2.5 0.8 / 0.4 0.4 / 1.8 6.2 / 0.0 

Broadcast 0.1 / 0.0 2.9 / 2.2 62.3 /29.8 0.1 / 0.0 0.0 / 0.0 0.0 / 0.0 

AlltoAll 6.1 / 1.0 11.6 / 0.4 64.3 / 2.9 1.3 / 0.6 4.8 / 0.4 1.0 / 0.0 

Random 0.0 / 0.0 0.3 / 3.6 1.9 /355.3 0.3 / 2.1 0.0 / 3.2 0.7 / 6.3 

 

 

NN 

NN 0.7 / 0.7 18.3 / 18.3 27.0 /27.0 1.0 / 1.0 12.0 / 12.0 7.7 / 7.7 

Pipeline 1.7 / 8.0 1.5 / 25.6 0.0 / 32.2 0.7 / 3.3 0.0 / 8.8 0.0 / 8.3 

Broadcast 0.4 / 1.4 2.3 / 19.0 0.0 / 13.1 0.0 / 1.2 0.1 / 8.2 0.0 / 0.7 

Alltoall 0.0 / 8.8 0.8 / 83.8 0.0 / 96.5 1.1 / 5.4 4.2 / 32.2 0.0 / 38.0 

Random 0.0 / 9.7 0.4 / 32.8 1.8 / 44.2 0.0 / 5.3 0.0 / 11.5 1.3 / 8.4 

 Pipeline 

Pipeline 5.0 / 5.0 2.2 / 2.2 7.2/ 7.2 1.1 / 1.1 1.1 / 1.1 1.8 / 1.8 

Broadcast 1.0 / 1.9 4.0 / 8.4 0.0 / 2.1 0.0 / 0.0 0.0 / 4.4 0.0 / 0.7 

Alltoall 30.0 / 14.2 7.6 / 34.9 0.0 / 58.9 10.5 / 5.0 3.6 / 17.1 0.0 / 32.5 

Random 0.1 / 29.3 0.5 / 14.7 1.8 / 10.1 0.1 / 3.2 0.2 / 2.3 0.8 / 0.0 

 Broadcast 

Broadcast 0.4 / 0.4 6.9 / 6.9 1.6 / 1.6 0.1 / 0.1 0.3 / 0.3 1.3 / 1.3 

Alltoall 0.8 / 1.9 0.0 / 10.0 0.0 / 14.0 0.7 / 0.8 2.2 / 4.7 0.0 / 7.1 

Random 0.0 / 2.5 0.0 / 5.6 0.7 / 0.7 0.0 / 1.3 0.0 / 0.4 0.4 / 0.0 

 

 

Alltoall 

Alltoall 3.4 / 3.4 37.4 / 7.4 40.1 / 40.1 0.0 / 0.0 18.7 / 18.7 15.1 /15.1 

Random 0.0 / 28.3 0.1 / 6.4 0.6 / 8.6 0.0 / 8.8 0.0 / 8.1 0.4 / 0.0 

 Random 

Random 0.3 / 0.3 1.0 / 1.0 3.3 / 3.3 0.1 / 0.1 0.0 / 0.0 0.9 / 0.9 

 

pattern and the communication percentage is high, it should not be cosched-
uled with any other application. If keeping the programs the same as in the
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Table 2. Runtime increases under node sharing with different combinations of communication
patterns and different communication percentages, and either 8, 32, or 64 cluster nodes. Message
size is 100k. Left number in cell is increase for row application and right number in cell is increase
for column application.

 Central 

 50% 30% 

 8 32 64 8 32 64 

Central 

 

13.4 / 13.4 21.2 / 21.2 20.0 / 20.0 0.5 / 0.5 7.6 / 7.6 7.5 / 7.5 

NN 4.6 / 13.6 3.5 / 8.2 0.2 / 2.6 3.0 / 3.4 2.0 / 2.9 0.0 / 0.3 

Pipeline 4.6 / 8.4 2.8 / 8.1 0.0 / 15.4 3.5 / 3.7 0.5 / 3.7 0.0 / 7.3 

Broadcast 3.1 / 6.4 0.0 / 0.9 1.7 / 41.1 0.9 / 1.8 0.0 / 0.0 0.7 / 18.3 

Alltoall 3.5 / 27.6 0.0 / 39.5 70.2 / 1.3 1.4 / 9.4 0.1 / 9.0 0.0 / 7.5 

 NN 

NN 19.4 / 19.4 13.8 / 13.8 3.0 / 3.0 8.5 / 8.5 7.3 / 7.3 1.2 / 1.2 
Pipeline 32.3 / 25.6 22.8 / 19.1 16.5 / 25.1 10.3 / 6.4 0.5 / 11.4 6.6 / 13.7 

Broadcast 12.6 / 9.3 6.5 / 7.3 7.0 / 4.5 5.3 / 4.6 2.3 / 6.8 1.7 / 14.3 

Alltoall 6.4 / 31.5 3.8 / 21.3 0.0 / 54.5 3.2 / 13.3 2.0 / 17.0 0.0 / 6.1 

 Pipeline 

Pipeline 1.2  / 1.2 1.8  / 1.8 1.1  / 1.1 0.5 / 0.5 1.1 / 1.1 0.1 / 0.1 

Broadcast 23.5 /26.5 21.4 / 16.8 24.8 / 19.7 13.7 / 10.6 0.5 / 7.6 9.0 / 9.1 

Alltoall 9.3 / 62.8 5.9 / 69.4 0.0 / 61.7 4.9 / 29.6 2.3 / 33.2 0.0 / 31.9 

 Broadcast 

Broadcast 0.0 / 0.0 0.0 / 0.0 1.0 / 1.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 
Alltoall 4.8 / 53.8 0.0 / 48.7 0.0 / 0.0 3.6 / 17.9 0.7 / 15.8 0.0 / 24.7 

 Alltoall 

Alltoall 31.3 /31.3 43.0 / 43.0 68.4 / 68.4 18.7 / 18.7 10.5 / 10.5 19.5 /19.5 

 

tests on the other cluster, the results became significantly better and acceptable,
with the only exception of the combination Broadbast/Alltoall which still had
a significant slowdown.

The overall results for our upper-bound tests demonstrate that different pat-
terns schedule differently together and that detailed application characteristics
should be recorded to decide whether running two applications under time
sharing is meaningful or not. Real application with lower communication per-
centages may behave significantly friendlier. Communication percentages as
presented here can be obtained with tools like our ScoPro monitor [16] and
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Table 3. Slowdowns with faster network with 30% communication on 64 nodes. First row
shows results for message size 10k (Central does not work because overflowing system buffers);
second row shows results for message size 100k.

 Central NN Pipeline Broadcast Alltoall Random 

Central N/A 
10.0 / 10.0 

N/A 
1.8 / 0.6 

N/A 
13.7 / 0.0 

N/A 
20.1 / 148.0 

N/A 
6.7 / 0.0 

N/A 
N/A 

NN  
10.8 / 0.8 
2.8 / 2.8 

10.4 / 11.3 
19.7 / 9.5 

7.4 / 74.1 
10.9 / 131.0 

22.8 / 0.0 
6.0 / 0.0 

14.7 / 9.3 
N/A 

Pipeline   
11.6 / 11.6 
24.6 / 24.6 

8.4 / 61.2 
18.7 / 612.2 

12.9 / 7.1 
34.6 / 0.0 

12.9 / 9.2 
N/A 

Broadcast    
30.8 / 30.8 
228.1/228.1  

60.0 / 0.0 
199.6 / 0.0 

51.9 / 6.4 
N/A 

Alltoall     
20.8 / 20.8 
15.0 / 12.4 

0.0 / 16.3 
N/A 

Random      
8.8 / 8.8 

N/A 

 

stored in performance directories as information for future runs of the applica-
tion.

7. Memory-access bandwidth
We tested memory-access bandwidth by creating programs which do not fit

into the cache but have high memory-access rates (column-wise matrix access).
We ran the program on its own and compared to the performance if running
multiple copies on different cores of the same Opteron processor and on the
cores of the second CPU. As Figure 4 shows, performance dropped from 138
Mbyte/sec to 119 Mbyte/sec if scheduling two programs on the same CPU,
i.e., by 17% which was a moderate decrease. However, there was no further
performance drop if scheduling more memory-intensive jobs on the second
CPU. Thus, the performance drop appears not to be due to a memory bottleneck
but to be exclusively due to the competition between the cores for the memory
queue of the CPU. However, the picture may change with the trend towards
larger numbers of cores and a quad-core Opteron on the horizon. Then, if
sharing one memory-access interface per processor, application performance
may drop unless it has very high cache locality.
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Since threads of the same parallel application are likely to have the same
characteristics, it then may be a significant advantage to rather run jobs with
complementary memory-access characteristics together.

105
110
115
120
125
130
135
140

single dual-core dual-core
dual-node

Figure 4. Memory-access throughput for diagonal swap if running one memory-intensive job,
two memory-access-intensive jobs on the same CPU, and the latter plus two memory-access-
intensive jobs on the second CPU.

8. Sharing the cache
Since caches may be shared under time sharing (cf. Section 3), we now

explore cache effects. Performance can drop significantly if the applications
do not fit together into the cache, and the job scheduler should therefore match
jobs such that this does not occur. This requires information about the cache
needs, i.e. the cache working-set sizes for the applications.

In the following, we explore the feasibility of simple black-box tests to
determine the cache needs via monitoring. For one application, we pretend not
to know the cache needs but want to extract them (black-box thread). We run a
second application (test thread) for which we change the cache needs explicitly
and incrementally. We expect the performance to drop significantly when both
threads do no longer fit together into the cache, because temporal locality is
fully or partially lost. Since we know the corresponding cache needs of the test
thread, we can then deduce the cache needs of the black-box thread.

Since the current AMD Opteron does not share the cache (an Opteron with
shared L3 cache will be on the market in the second half of 2007), we test
true time sharing with CPU switching, by binding both threads to the same
core. This creates a lower bound of cache impact because the threads can run
undisturbed when the CPU is allocated to them, and cache locality is only lost
upon switches between threads. The AMD Opteron has 1 Mbyte of L2 4-way
combined cache, and cache replacement is LRU.

Even if temporal locality is lost, spatial locality per cache line still applies.
Thus, programs with different memory-access patterns may suffer to a different
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extent if the working-sets do not fit into the cache. We therefore used synthetic
programs with 1) consecutive memory access or 2) stride access (one access per
cache line only) for the black-box thread. The test thread always used the stride
pattern. In all cases, the programs performed dominantly read/write accesses
and were kept very simple to make instruction caching negligible. We tested
the cases that the black-box thread had a working-set of 256k, 512k, or 768k.
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Figure 5. Percentage of runtime increase for the test thread due to cache misses under standard
time sharing, shown for the sum of the two threads’ cache needs (X axis) and different cache needs
(256k, 512k, or 768k) for the black-box thread. Left graphic shows results for the stride-access
pattern, right graphic for the consecutive-access pattern.
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Figure 6. Left graphic shows percentage of runtime increase with increasing working set under
CPU hyper sharing. Right graphic shows percentage of runtime increase for the test thread due
to cache misses, shown for the sum of the two threads’ cache needs (X axis), with the black-box
thread needing either 128k or 256k cache.
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Figure 5 shows that indeed the runtime increased significantly at the point
where the two threads did not fit anymore into the cache together. The effect
was clearer for the stride pattern because it does not have spatial locality per
cache line. We also notice that the different cache needs for the black-box
thread behaved differently. However, the difference was only gradual and the
basic trend was the same.

Note that the results are also relevant for a single program if it creates a
large number of threads to hide latencies [3] (switches may then occur more
often than from time sharing) or to increase cache locality from smaller data
chunks. In all cases, the threads need to be configured such that their data fits
into the cache or such that multiple threads’ data fits together into the cache.
Our ATOP middleware [14] can configure and reconfigure the data partitioning
(that represent chunks of work) during runtime to adjust the working-set size
accordingly.

Finally, we show some tests from CPU hyper sharing where the applications
share the cache simultaneously (as they would if the multiple cores of the CPU
shared the L2 or L3 cache), see Figure 6. Memory access was stride-access.
The synthetic programs used only memory-access or integer operations to avoid
conflicts on CPU-internal resources. The cache size of the Xeon is 512k. The
runtime increased significantly if the sum of the cache needs approached the
cache size, and had a slightly larger jump if going beyond the cache size, i.e.
from 512k to 576k. Thus, the approach is promising to extract cache-needs
information.

9. Summary and conclusion
We have shown that it be beneficial to run applications under time sharing

which splits CPU resources but shares network, disk, and memory. Our ATOP-
Grid middleware is capable of switching between time and space sharing which
increases the scheduling options for grid jobs by permitting the scheduler to
choose the approach which performs best with the current system load and to
potentially switch between time sharing and space sharing during the runtime
of the job. We have explored communication, memory, and cache impact. We
found that the communication pattern and the percentage of communication
have significant impact on the runtimes under time sharing. Memory access
appears not to be a serious problem with dual core architectures like the Sharcnet
clusters used (Hewlett Packard). Regarding potential cache sharing, we have
proposed an approach to monitor cache of a program by running a test thread
with varying cache needs and finding the point where both threads exceed the
maximum cache space available. The approach is promising but needs further
exploration.
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plications [27], and help in implementing performance-aware resource allocation
policies of real time job schedulers. However, application benchmarks have been
largely ignored due to diversified types of applications, multi-constrained execu-
tions, dynamic Grid behavior and heavy computational costs. To remedy these,
we present the GrapBench (Grid Application Benchmarks) system. GrapBench
computes the Grap Benchmarks for Grid applications which are flexible regarding
variations in problem-size of the application and machine-size of the Grid-site.
GrapBench dynamically controls the number of benchmarking experiments for
individual applications, and manages the execution of these experiments on dif-
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our approach.
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1. Introduction
Grid infrastructure provides an opportunity to the scientific and business

communities to exploit the powers of heterogeneous resources in multiple ad-
ministrative domains under a single umbrella [13]. Proper characterization of
Grid resources is of key importance in effective mapping and scheduling of the
jobs to these resources, (to utilize maximum power of these resources). Bench-
marking has been used for many years to characterize a large variety of systems
ranging from CPU architectures to the file-systems, databases, parallel systems,
internet infrastructures, middlewares etc. [11]. There have always been issues
in optimized mapping of jobs to the Grid resources on the basis of available
benchmarks [26]. Existing Grid benchmarks (or their combinations) do not
suffice to measure/predict application performance and scalability, and give a
quantitative comparison of different Grid-sites for individual applications while
taking into effect variations in the problem-size. In addition, there are no in-
tegration mechanisms and common units available for existing benchmarks to
make meaningful inferences about the performance and scalability of individual
Grid applications on different Grid-sites.

Application benchmarking on the Grid can provide a basis for users and
Grid middleware services (like meta scheduler, resource broker) for optimized
mapping of jobs to the Grid resources by serving as evaluation of fitness to
compare different computing resources in the Grid. The performance results
obtained from real application benchmarking are much more useful for running
applications on a highly distributed Grid infrastructure than the regular resource
information provided by the standard Grid information services [26]. Applica-
tion benchmarks are also helpful in predicting the performance and scalability
of Grid applications, studying the effects of variations in application perfor-
mance for different problem-sizes, and gaining insights into the properties of
computing nodes architectures. However, the complexity, heterogeneity and
the dynamic nature of Grids raise serious questions about the overall realiza-
tion and applicability of application benchmarking. Moreover, diversified types
of applications, multi-constrained executions, and heavy computational costs
make the problem even harder. Above all, mechanizing the whole process of
controlling and managing benchmarking experiments and making benchmarks
available to users and Grid services in an easy and flexible fashion makes the
problem more challenging.

To overcome this situation, we present GrapBench, a four layered Grid ap-
plications benchmarking system. GrapBench produces benchmarks for Grid
applications taking into effect the variations in problem-size of the application
and machine-size of the Grid-site, thus allowing problem-size and machine-size
flexible comparison of Grid-sites for individual applications. GrapBench pro-
vides the necessary support for conducting controlled and reproducible experi-
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ments, for computing performance benchmarks accurately and for interpreting
benchmarking results in the context of applications’ performance and scalability
predictions and application specific comparison of different Grid-sites through
a graphical user interface. GrapBench takes the specifications of executables,
set of problem-sizes, pre-execution requirements and set of available Grid-sites
as an input in XML format. These XML specifications, along with the available
resources are parsed to generate jobs to be submitted to different Grid-sites. At
first, GrapBench completes pre-experiment requirements, if any, and then runs
the experiments according to the experimental strategy. Benchmarks are com-
puted from experimental results and archived in benchmarks repository for later
use. Performance and scalability prediction and analysis from the benchmarks
are available through a GUI and GT4 service interfaces. We do not require com-
plex integration/analysis of measurements, or new metrics for interpretation of
benchmarking results.

Among our considerations for the design of Grid application benchmarks
were conciseness, portability, easy computation and adaptability for different
Grid users/services. We have implemented a prototype of the proposed system
under ASKALON [12], on the top of GT4 [9].

The rest of the paper follows as such: Section 2 describes performance of a
Grid application and the different factors affecting it. The design of benchmarks
generation process is described in the Section 3 . In Section 4 we describe the
number of benchmarks experiments and autoGrap a semi-automatic applica-
tion benchmarking tool to make benchmarking experiments. Computation of
benchmarks from experimental results is explained in Section 5. In Section 6
we describe utilization of benchmarks. We present results from experiments
conducted on Austrian Grid and related analysis in Section 7. Related work is
presented in Section 8, and finally we conclude in Section 9.

2. Performance of a Grid Application
Performance of an application on a Grid-site is dependent upon the perfor-

mance of a couple of inter-related Grid resources at different levels of Grid
infrastructure: performance of: the Grid-site, the computing node, CPU, mem-
ory hierarchy, I/O, storage node, network (LAN/WAN), network topology etc.
as shown in Figure 1, adapted from [11]. Our conjecture is that, the traditional
benchmarks (combination of benchmarks) and their context of use cannot be di-
rectly used for application performance prediction for multiple reasons: differ-
ent performance representation of individual resources, high cost (with respect
to time and money), trust worthiness of benchmarking suits and corresponding
measurements, metrics interpretation, and above all the complex integration of
results from different resources, to make some conclusions useful for human
users and Grid middleware services. Moreover, existing sets of benchmarks do
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not allow cross-platform interoperability [9] of benchmarks results at different
structural levels of the Grid, for different Grid applications. More specifically
there is a need for benchmarks, which

(i) represent the performance of Grid application on different Grid sites
(ii) incorporate the individual effects of different Grid resources specific to

different applications (like memory, caching etc.)
(iii) can be used for performance and scalability predictions of the application
(iv) are portable to different platforms
(v) are flexible regarding variations in problem-size and machine-size

(vi) support fast and simplified computation and management
(vii) are comprehensively understandable and usable by different users and

services

On the other hand, it is also necessary to address the high cost of Grid bench-
marking administration, and benchmarking computation and analysis. This re-
quires a comprehensive system for benchmarking computation, management,
with a visualization and analysis component.

Figure 1. Different factors affecting application performance in the Grid.

3. GrapBench System Design
GrapBench benchmarks Grid applications on different Grid-sites. It consists

of a framework containing set of tools to perform and facilitate the benchmark-
ing process (the benchmarking experiments, computation and storage of results)
in a flexible way, and later publishing the results and analysis.

The process of benchmarks generation is shown in the Figure 2. Layer 1
specifies application details for benchmarking experiments in XML based Grid
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Application Description Language (GADL), and later, compiles job descrip-
tions for individual experiments from it. GrapBench dynamically controls the
total number of benchmarking experiments for individual applications w.r.t.
different problem-sizes. In layer 2, these experiments are executed on avail-
able Grid-sites provided by resource manager [24]. GrapBench considers the
Grid-site at both micro level (the individual Grid nodes) and macro level (the
Grid-site) taking machine-size as a variable in benchmark measurements. Such
application benchmarks easily incorporate the variations in application’s per-
formance associated to different problem-sizes and machine-sizes. Layer 3
computes the benchmarks and stores the results in benchmarks repository. The
layer 4 is an analysis and visualization layer making the benchmarks and related
analysis available to different clients through GUI and GT4 service interfaces.

Figure 2. Process of benchmarks generation

4. Benchmarking Measurements
Controlling the number of benchmarking measurements is of key impor-

tance in the efficiency of the whole computation process. For the efficiency
of computation process we focus to reduce the total number of benchmarking
experiments and maximize the utility of benchmarking results.

Our methodology of reducing the number of benchmarking experiments is
to enable sharing of the benchmarking information across the Grid-sites. The
information sharing mechanism is explained in the Section 5. The performance
comparsions (e.g. performance ratios) of different Grid-sites are different for
different applications. Moreover, these also vary for different problem sizes and
machine-sizes. For performance prediction and Grid-sites’ comparisons while
considering variations in the problem-size, we make a full factorial design of
benchmarking experiments on the Grid and one benchmarking experiment for
one fixed problem-size (called base problem-size) on each of other non-identical
Grid-sites. We select the smallest problem-size as the base problem-size. Later,
at the time of computation of benchmarks from these experimental results, the
process of normalization (see Section 5) helps in completing the benchmarks
computation for all the Grid-sites. The benchmarks for the base problem-size
are used to share information across the Grid-sites. For scalability analysis and
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prediction, one benchmark experiment for each of different machine-sizes is
also made.

The total number of experiments for an application A with p problem-sizes on
a Grid with Grid-size of n, with m different machine-sizes is m×n×p. One of
the distinctions of our work is we can greatly reduce the number of benchmarks
experiments through our strategy from m×n× p to m + n + p− 2 (n + p− 1
for execution time predictions and m − 1 for scalability predictions). Later,
we employ prediction mechanism to serve performance values for the problem-
size and machine-size combinations that were not effectively measured in the
experiments.

We argue that this reduction in the number of performed benchmarks is a rea-
sonable trade-off between duration of the benchmarking process and accuracy.
In Section 5, we show experimentally that predictions based on our approach
are with in 90% accuracy. A similar or better acuracy can be achieved with ei-
ther more benchmarks, or by using analytical modeling techniques. However,
both these alternatives are time-consuming. In addition, analytical modeling
requires a separate model and expert knowledge for each new type of applica-
tion. With current grid environments hosting hundreds to thousands of different
applications1, analytical modeling for individual application’s performance and
scalability (which requires manual efforts) is impractical, whereas, benchmark-
ing requires only one generic setup.

4.1 Grap Benchmarking experiments with AutoGrap
To facilitate Grid administrators, application developers and end users, for

comprehensive and adaptable administration and management of benchmarking
experiments we have AutoGrap. The architecture of AutoGrap is presented in
Figure 3. The main components of the architecture are:

Experiments Specifications Engine (ESE) (including an RSL/JDL com-
piler that converts XML specifications of application to job descriptions)

Experiment Execution Engine

Monitoring Component

Orchestrator

Benchmarks Computation Component

Archive Component

Benchmarks Visualization and Analysis Browser

Information Service Component (publishes results to other services)

1The Grid Workload Archive, available on line at http://gwa.ewi.tudelft.nl, hosts grid workload traces that
also record the job executables.
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First, a small compiler in ESE parses the application specifications written
in platform-independent XML based Grid Application Description Language
(GADL) and produces the job descriptions from it in a JDL. Later, these job
descriptions are add resource specifications, on which these jobs are to be
launched, to produce final jobs used for launching the benchmarks experiments.

Figure 3. AutoGrap Architecture

In our present prototype implementations we
support the RSL language of Globus [9].
The benchmark application is the actual ap-
plication’s executable, to be benchmarked.
The Experiment Execution Engine executes
benchmarks experiments designed by ESE
on the Grid-sites available from our Re-
source Manager. The monitoring compo-
nent watches the execution of the benchmark-
ing experiments and alerts the Orchestrator
component to collect the data and coordinate
the start-up of the benchmarks computation
component to compute the benchmarks. The
Archive Component stores this information
in the benchmarks repository for future use.
The benchmarks Browser publishes the Grap Benchmarks on a GUI, and In-
formation Service Component is an interface to other services for Grap Bench-
marks.

4.2 Experiment specification engine
To describe application specifications we introduce Grid Application De-

scription Language (GADL). A GADL definition specifies the application to
be executed, its exact paths from resource manager, the problem-size ranges
and pre-requisites of execution (some executions before the actual execution or
setting of environmental variables etc.) [3, 20], if any. Every instance of GADL
is described by:

Application name with a set of problems sizes given as range (start-
Val:stepSize:endVal) which are described by name and value, e.g.
<application name="Wien2k" />

<parameter>

<name="k-points" value=5.0:0.1:9.0>

</parameter>

Resource manager [24] URI, to get the available Grid-sites and location
of the executables on them.
<resourcemanager>

<location path="http://karwendel.dps.uibk.ac.at:40105/wsrf/
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services/GlareService"/>

<resourcemanager/>

A set of pre-requisites, comprising of the components which must be
finished before the execution (of some components of) the application.
<prerequisites>

<location path="http://dps.uibk.ac.at:/home/farrukh/pre-reqs"/>

</prerequisites>

A set of input files required for execution of the application
<inputfile>

<location path="http://dps.uibk.ac.at:/home/farrukh/input.tar"/>

<inputfile/>

An executable to change the problem-size in some input files (used by
ESE)
<probsizechange>

<location path="http://dps.uibk.ac.at:/home/farrukh/

changeProbSize"/>

<probsizechange/>

4.3 Experiment execution engine
The AutoGrap exploits opportunistic load balancing [22] for scheduling

benchmarking experiments in the Grid. The algorithm for automatically making
benchmarking experiments is shown in Algorithm 4.3. At the start, one job is
submitted to each of the available Grid-sites. The next job is submitted after
the completion of the previous submitted job, until all the jobs are finished from
the full factorial design of experiments (Algorithm line 5 to line 13). In the next
step, one experiment, for one fixed problem-size (common for all, called base
problem-size), is made on each of non-identical Grid-sites (Algorithm line 14
to line 17). The benchmarks for the common problem-size are later used in the
normalization 5. We categorize two Grid-sites to be identical if they have same
CPU architecture, CPU speed, and memory. All benchmarking experiments are
made when the Grid-site is found to be free, with the help of NWS [29]. The
execution times of these experiments are archived and later used by Benchmarks
Computation Component to calculate the benchmarks.

4.4 Additional benchmarking considerations
Sometimes the beckground load, that is, the applications run by other users,

severely affects the performance of some (or even all) the applications in the
system. This happens mostly when several applications contend for the same
network or processor shares, or when resource utilization is very high and the
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Algorithm 1 Scheduling Benchmarking Experiments
1: makeBenchmarkExperiments()
2: Input: A : A = {α, β, γ, ...} {Applications to be benchmarked}, λ : λ = {m1, m2, m3, ..., mn}{Set of

problem-sizes for each application in A}, S : S = {s1, s2, s3, ..., sn} {Set of Grid-sites}
3: Output: ω - the execution time result set

4: Jobs = getJobDescriptions(A, λ, S);
5: while Jobs �= φ do
6: if ∃s ∈ S | available(s) (when no job is running on s) then
7: j = getNextJob(Jobs);
8: ω′ := getExeTime(s, j);
9: ω := ω ∪ ω′;

10: else
11: wait();
12: end if
13: end while
14: for ∀s ∈ S do
15: ω′ := getExeTime(s, m1);
16: ω := ω ∪ ω′;
17: end for

18: return ω;

resource manager is ineffective [6]. However, our benchmarking procedure
does not take into account the background load, at least for the moment. The
reason is threefold. First, our goal is to quantify the best achievable performance
of an application on a grid platform, that is, without the contention generated by
additional users. Work in [6] helps quantifying the ratio between the maximum
achievable performance and the performance achieved in practice. Second,
work in hotspot or symbiotic scheduling [28], helps scheduling applications
with overlapping resource requirements such that the overlap is minimized.
Third, while mechanisms for ensuring the background load on the resources
have been proposed, e.g., in [16], a better understanding of the structure and of
the impact of the background load is needed. We plan to investigate aspects of
this problem in future work.

5. Computation of Benchmarks
The Grap Benchmarks are computed by normalizing the execution times.

The execution times are normalized by dividing all the execution times (for dif-
ferent problem-sizes) with the execution time for a base problem-size selected
by default as the largest problem-size (to take in effect of inter process commu-
nication) in the set of problem-sizes specified by the user. The normalization
mechanism not only makes the performance of different machines comparable
but also provides a basis for translating different performance values across
different Grid-sites. The normalization of values is based on the observation
that for many applications, and in particular for all the applications used in
our experimental work, the normalized execution times for different problem-
sizes and machine-sizes are the same on all the Grid-sites, with 90% accuracy.
This allows cross-platform interoperability of Grap Benchmarks. For exam-
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ple, the normalized execution on a Grid-site s for a certain problem-size and
machine-size will be equal to that of an other Grid-site t.

Normalized Exe. Time(s) = Normalized Exe. Time(t)

On the basis of our experimental observations, we assume a simple application
model under which the rate of change of execution time for a problem-size q
on Grid-site s, Tq(s), with respect to execution time for a problem-size r on the
a Grid-site s is similar to that of on Grid-site t [17], i.e.

∆Tq(s)
∆Tr(s)

=
∆Tq(t)
∆Tr(t)

, ∆ : rate of change

For our set of grid applications, this assumption was over 90% accurate, and
this is shown in the Figure 4(a). Similarly, we normalize the execution times
when machine size is also taken as a parameter, to compute benchmarks incor-
porating the variations in machine size. This normalization is also based on a
similar model based on our experimental observations. Under this model for
CPU-intensive applications, we assume the rate of change in execution time
of an application across different problem-sizes is also preserved for different
machine-sizes, as shown in Figure 4(b). i.e.

∆Tq,m(s)
∆Tq,n(s)

=
∆Tr,m(s)
∆Tr,n(s)

Moreover, rate of change in performance behavior across different machine-
sizes is also preserved for different problems-sizes. i.e.

∆Tq,m(s)
∆Tr,m(s)

=
∆Tq,n(s)
∆Tr,n(s)

We also found an accuracy of more than 90% on this model, and this behavior
is also shown in the Figure 4(b).

6. Grap Benchmarks Utilization
Grap Benchmarks are computed from results of benchmarks experiments

and archived for future references. This is done in a manner that facilitates
the comparisons between the benchmarks for different machines, problem-
sizes and machine-sizes, along with the performance and scalability predictions.
Benchmarks can be browsed through a GUI (see Figure 8(a)) for application
performance and scalability analysis for different problem-sizes on different
Grid-sites. In this section we explain how Grap Benchmarks are used for
performance & scalability predictions and Grid-site comparisons.
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6.1 Performance and scalability predictions
The first key use of Grap Benchmarks is application performance and scala-

bility predictions for Grid users, as well as Grid services like meta-schedulers
and performance analysis service. Grap Benchmarks can facilitate good en-
gineering practices by allowing alternative implementations to be compared
quantitatively (e.g. see Figure 7(a)). Performance of an application can be
predicted, for any problem-size p on any Grid-site s from another Grid-site t
(for which execution time for problem-size p exists) from Grap Benchmarks
using the phenomenon of normalization as: if Tq(s) represents the execution
time of an application, for a problem-size q, on a Grid-site s, then;

Tq(s) =
Tq(t)
Tr(t)

× Tr(s)

Similarly, for scalability analysis and prediction, (taking machine-size as a
parameter) the performance of the parallel applications for different number of
CPUs can be predicted from Grap Benchmarks as: If Tq,m(s) represents execu-
tion time of an application for problem-size q on a Grid-site s for a machine-size
m,then;

Tq,m(s) =
Tr,m(s)
Tr,n(s)

× Tq,n(s)

For execution time and scalability predictions, normalization is done based
on execution time for the closest set of parameters(problem-size and machine
size). At the start, it is made based on the only common set of parameters in the
benchmark repository and later, if some other performance values are available
(after adding some experimental values from real runs), calculated based on
the closer performance value, as it increases accuracy in the cross platform
performance and scalability predictions. For our prediction results we obtained
a minimum accuracy of 90% from our proposed number of experiments.

Tq,m(s)
Tq,n(s)

=
Tr,m(s)
Tr,n(s)

|n → m, q → r

The benchmarks, performance and scalability predictions can be obtained
through Information Service Component which is a GT4 service interface, and
can also be browsed through Benchmarks Browser GUI.

6.2 Grid-site comparisons
The quantitative performance comparisons of different Grid-sites is different

for individual applications. This is because of their different underlaying ar-
chitectures and different performance requirements of Grid applications. This
is demonstrated with quantitative comparisons of two Grid-sites agrid1 and
altix1.uibk for three real world applications in the Figure 7(b). In addition, the
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performance comparisons for the same Grid-sites are also different for different
problem sizes and machine sizes. This behavior of Grid-applications is pre-
sented with performance comparisons of two Grid-sites altix1 and agrid1, in
terms of execution time ratios for different problems sizes in Figure 8(b).

The first key use of Grap Benchmarks is support for quantitative compar-
isons of different Grid-sites. Quantitative comparisons of different Grid-sites
help real time schedulers for mapping jobs to different Grid-sites, and resource
brokers for resource selections from the available pool of resources. Further-
more, these comparisons provide application developers with information about
the systems capabilities in terms of application performance, so that they can
develop and tune their applications for high-quality implementations.

Design of Grap Benchmarks helps facilitating the comparisons of applica-
tions’ performance for different values of problem-sizes and machine-sizes on
different Grid-sites, as the second key use. This can guide the Grid-site selec-
tion policies by the real time schedulers, resource brokers and different Grid
users. The comparison of different Grid-sites for a application Wien2k is shown
in the Figure 5(a).

7. Results and Analysis
We have conducted our experiments from the prototype implementation of

our system on Austrian Grid. The testbed is described in Table 1. In the test
environment, the 8 sites employ 5 cluster sizes, 5 structural and communication
architectures, 6 processor types, and 6 memory sizes. This ensures that the
tested is heterogeneous. The experiments were conducted for three real world
applications Wien2k [8], MeteoAG [21] and Invmod [25].

Wien2k application allows performing electronic structure calculations of
solids using density functional theory based on the full-potential augmented
plane-wave ((L)APW) and local orbital (lo) method. MeteoAG produces mete-

Table 1. The Austrian Grid test bed sites.

Site Name Architecture CPUs Processor Arch. RAM[MB] Location
altix1.jku ccNUMA, SGI Altix 3000 16 Itanium 2, 1.6 1400 Linz

altix1.uibk ccNUMA, SGI Altix 350 16 Itanium 2, 1.6 1600 Innsbruck
schafberg ccNUMA, SGI Altix 350 16 Itanium 2, 1.6 1400 Salzburg

agrid1 NOW Fast Ethernet 20 Pentium 4, 1.8 1800 Innsbruck
hydra COW Fast Ethernet 16 AMD Athelon 2.0 1600 Linz
hcma NOW Fast Ethernet 206 AMD Opteron 2.2 4000 Innsbruck
zid-cc NOW Fast Ethernet 22 Intel Xeon 2.2 2000 Innsbruck

karwendel COW InfiniBand 80 AMD Opteron 2.6 16000 Innsbruck
Total 388
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machine-sizes(b) exhibit the realization of normalized behavior
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Figure 5. Grid-sites and scalability comparison for different applications

orological simulations of precipitation fields of heavy precipitation cases over
the western part of Austria with RAMS, at a spatially and temporally fine gran-
ularity, in order to resolve most alpine watersheds and thunderstorms.Invmod
application helps in studying the effects of climatic changes on the water bal-
ance through water flow and balance simulations, in order to obtain improved
discharge estimates for extreme floods.

The Grap Benchmarks for Wien2k on different Grid-sites of the Austrian
Grid are shown in Figure 4(a). Total 45 benchmark experiments were made for
41 different problem-sizes on 5 different Grid-sites. By one experiment here
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Figure 6. MeteoAG Grap Benchmarks on hcma
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we mean average of multiple repetitions to reduce the anomalies in the compu-
tations. In our presented work we repeated each computation for 5 times. For
Wien2k, the execution time for problem-size 9.0 is used as base performance
value for normalization. The similar benchmarks curves (for different values
of problem-size) on different machines show the realization of normalized per-
formance behavior of the Grid Benchmarks across heterogeneous platforms.

To give a glimpse of the variability in the quantitative comparisons of dif-
ferent Grid-sites for different applications, we present our experimental results
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in Figure 7(b). As shown in the figure, the comparison of two different Grid-
sites agrid1 and altix1.uibk yielded different ratios (altix1.uibk : agrid1) of
execution times for three different applications. For Wien2k this ratio is 2.37,
for Invmod 10.37 and for MeteoAG 1.71. It is noteworthy that these ratios are
irrespective of the the total execution times on these Grid-sites. This is the rea-
son that why benchmarks for individual resources (CPU, memory etc.) do not
suffice for application performance and scalability predictions. Furthermore,
considering one application, the comparison of execution times on Grid-sites
yields different ratios for different problem sizes. This performance behavior
of Grid applications urged us to make a full factorial design of experiments
on the Grid, rather than modeling individual applications analytically which is
complex and in-efficient. The execution time ratios of two Grid-sites altix1.uibk
and agrid1 for 41 different problem sizes are shown in Figure 8(b).

Performance and scalability benchmarks for different number of CPUs, for
an other application MeteoAG are shown for two different Grid-sites zid-cc
and hcma in Figures 5(b) and 6(a) respectively. Total 30 benchmarking ex-
periments were made for 19 different problem-sizes and 12 different machine
sizes on zid-cc. Total 32 benchmarking experiments were made for 19 different
problem-sizes and 14 different machine sizes on hcma. In these experiments
we have used a machine-size of 1 for normalization. The identical scalability
curves demonstrate the realization of normalized performance behavior of Grid
Benchmarks with respect to problem-size and machine-size on one platform.

A comparison of different Grid-sites, based on Grap Benchmarks, for Wien2k
is shown in Figure 5(a). The scalability comparison for MeteoAG for different

(a) Graphical user interface, for performance and
scalability analysis
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Figure 8.
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problem-sizes, on two different platforms (zid-cc(32-bits) and hcma(64-bits))
is shown in Figures 5(b) and 6(a) respectively. A comparison of two different
version of Wien2k (32-bits version and 64-bits version) is presented in Fig-
ure 7(a) on karwendel. These graphs were generated from Grap Benchmarks,
when only one benchmark measurement of 64-bits version was available.
We observed a maximum average variation of 10% from actual values (obtained
from real runs) in our performance and scalability predictions which means a
90% accuracy in our predictions where the maximum standard deviation of 2%
was observed.

8. Related Work
There have been several good efforts at benchmarking individual Grid re-

sources like [4, 7, 18]. The discussion presented in [10] shows that the con-
figuration, administration and analysis of NGB requires an extensive manual
effort, like other benchmarks. Moreover, these benchmarks lack some integra-
tion mechanism needed to make meaningful inferences about the performance
of different Grid applications from these benchmarks.

A couple of good comprehensive tools like [27] are also available for bench-
marking a wide range of Grid resources. These provide easy archiving and
publishing the results. Likewise, GrenchMark [15] is a framework for ana-
lyzing, testing, and comparing grid settings. Its main focus is the generation
and submission of synthetic grid workloads. By contrast, our work focuses on
single application benchmarks, which are extensively supported.

Individual benchmarks have been successfully used for resource alloca-
tion [19, 5] and application scheduling [14]. Work in [19] presents good work
for resource selection, by building models from resource performance bench-
marks and application performance details. Authors in [5] present resource
filter, resource ranker and resource MakeMatch on the basis of benchmarks
and user provided information. Though this work provides good accuracy,
it requires much user intervention during the whole process. Moreover, these
benchmarks do not support cross-platform performance translations of different
Grid applications while considering variations in problem-sizes.

A similar work has been presented by Dikaiakos et. al. in [26]. The authors
present a tool for resource selection for different applications while consider-
ing variations in performance due to different machine-sizes. Importance of
application specific benchmarks is also described by [23]. In this work au-
thors present three different methodologies to benchmarks Grid application by
modeling application and Grid-site, and require much manual intervention.

The distinction of our work is that we focus on controlling and specifying
the total number of experiments needed for benchmarking process and our
proposed benchmarks are flexible regarding variations in machine-size as well
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as problem-sizes (required for real time scheduling and application performance
prediction). Moreover, we support a semi-automatic benchmarking process.
The cross platform inter-operability of our benchmarks allows trade-off analysis
and translation of performance information between different platforms.

9. Conclusion and Future Work
Application benchmarks provide a concrete base for application’s perfor-

mance analysis and predictions, incorporating variations in the problem-sizes
and machine-sizes on different platforms and for real quantitative comparison of
different Grid-sites for individual applications. Grap Benchmarks are represen-
tative of performance of Grid applications on different Grid-sites. Computed
from real execution of applications these incorporate the individual effects of
different Grid resources specific to applications. Their computation, execution,
performance measurements storage and management are affordable in terms
of cost, such as management of the benchmarking process, execution time
and storage. Performance metrics derived from the benchmarking experiments
can be easily associated with the structure of the corresponding benchmarks.
Grap Benchmarks are easy to compute and use in contradiction to existing
benchmarking tools and techniques for different Grid resources. Experiments
conducted according to our proposed strategy make the benchmarks flexible
regarding problem-size and thus allow problem-size and machine-size flexible
comparisons of different Grid-sites. Simple metrics of benchmarks make them
directly usable and understandable to different Grid users and services.

We benchmark applications’ performance only from execution times. The
reason for this is general property of benchmarks that these should be repeat-
able and queue wait times are not normally repeatable. Grap Benchmarks can
also help in designing trade-off analysis, and to exchange information between
infrastructure developers and Grid applications writers. We are enhancing our
present work towards application benchmarking at the level of Grid constel-
lations comprised of multiple sites which constitute the computing platform
of a Virtual Organization. We also plan to incorporate application throughput
information for performance transformation across the platforms.
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1. Introduction
The Grid was originally proposed as a global computational infrastructure to

solve grand-challenge, computational intensive problems that cannot be handled
within reasonable time even with state of the art supercomputers and computer
clusters [1]. Grid computing tackles these tasks by aggregating geographically
and architecturally dispersed hardware and software resources into large virtual
super-resources. The first decade of grid research aimed at creating relatively
reliable infrastructures to serve researchers and attract users. These attempts
have led to the present grid middlewares, and now development is focusing on
user requirements. End-users typically access grid resources through resource
management systems. Unfortunately, these tools are typically tightly coupled
to one specific grid environment and do not provide multi-grid support because
each center has its own resource management and scheduling system. Even if a
tool is connected to multiple grids, applications that utilize services from these
grids simultaneously are rarely supported.

There have been several attempts to make existing production Grids and grid
services interoperable. Grid researchers seem to follow two different ways in
the area of resource management.

The first one is to extend existing resource brokers with multiple grid mid-
dleware support. The Gridbus Grid Service Broker [2], Gridway [3], JSS [4],
GRMS [5], GTbroker [6] and eNANOS [7], all support accessing resources
of different middlewares. The GRIP [8] broker is the one that tries to support
interoperability with a semantic matching of the resource descriptions enabling
job submissions to Globus [9] [10] and Unicore [11] sites. This summary shows
that these tools are forming separate user groups, again. They use different job
descriptions and do not communicate with each other: putting an end to this
separation process would need high efforts by all parties.

The second approach is to provide a higher level tool that supports differ-
ent middleware services. One possible instance of this approach is a meta-
scheduler, which coordinates some communication process between existing
schedulers. A part of the SPA (Single Point of Access) in the HPC-Europa
Project [12] was working on a similar topic. In this approach, each center im-
plements a plug-in with its own set of supported capabilities. The user chooses
manually the system to submit their jobs and the job scheduling policies are
evaluated inside the context of each center. Thus, it does not take into account
the broker scheduling properties: it rather operates as a job submitter.

The OGSA-RSS-WG of the OGF [13] devoted efforts to provide protocols
and interface definitions for the resource selection services portion of the Execu-
tion Management Services (EMS) part of the Open Grid Services Architecture.
The Resource Selection Services (RSS) consist of the Candidate Set Generator
(CSG) and the Execution Planning System (EPS). The CSG can be used to
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generate a set of computational resources that are able to run a job in general,
while the EPS uses this list to decide exactly what resources to run the job.

The GSA-RG of OGF [12] is currently working on a project enabling grid
scheduler interaction. They try to define a common interface among schedulers
enhancing interoperability. The greatest problem is that the existing scheduler-
s/brokers need to support this common interface, so they need to be modified.
In the following sections of this paper we introduce a meta-data model for de-
scribing various resource brokers to enable communication and interoperability
among them. Furthermore, we formalize the proposed meta-data model and
we specify a XML schema as a possible implementation for the model.

2. The Meta-Brokering Approach and Description
Languages

Utilizing the existing, widely used and reliable resource brokers and man-
aging interoperability among them could be new point of view in resource
management. Users usually have different certificates to access different Vir-
tual Organizations (VO). A new problem arises in this situation: which VO,
which broker to choose for my specific application? Just like users needed
Resource Brokers to choose proper resources within a VO, now they need a
meta-brokering service to decide, which broker (or VO) is the best for them and
also to hide the differences of utilizing them. Therefore, a meta-broker can be
defined as the middleware component that selects the most appropriate meta-
scheduler/broker to submit a job following a particular policy. In this context,
a part of the interoperability mechanisms, a new area on scheduling policies is
opened to the research (e.g. load-balancing across multiple VOs).

Heterogeneity appeared not only in the fabric layer of Grids, but also in the
middleware. Even components and services of the same middleware may sup-
port different ways for accessing them. After a point this variety makes the
users’ and developers’ life miserable. Languages are one of the most impor-
tant factors of communication. Different resource management systems use
different resource specification languages like RSL [9], JDL [13] [14], etc. The
documents specifying the jobs need to be written by the users to specify all
kinds of job-related requirements and data. The OGF has already started to
take several steps towards interoperability among these coordinating compo-
nents, and proposed a resource specification language standard called JSDL
[15]. As the JSDL is general enough to describe jobs of different grids, this
tool could solve the interoperability problem if it was supported by the different
middleware systems regarding job descriptions.

Besides describing user jobs, we also need to describe resource brokers in
order to make difference among them and help the Meta-Broker to decide,
which broker to choose for submission. These brokers have various features
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Figure 1. Languages of the Meta-Broker

for supporting different user needs and to implement scheduling policies. These
needs should be able to be expressed in the users’ JSDL, and identified by the
Meta-Broker for each corresponding broker. Therefore we propose a Data
Model for describing Resource Broker capabilities, to store metadata about
brokers. We use a broker taxonomy [16] to identify the relevant properties,
where various, widely used grid brokers are gathered and analyzed. These two
kinds of languages are used by the Meta-Broker to communicate with the inner
and outer world (Figure 1).

3. Data Model for Broker Capabilities
3.1 Formal definition of the data model

For describing Grid Resource Broker capabilities, we introduce an extensi-
ble metadata model. Our model can be taken as an extension of the general
scheduling model presented in [17]. Beside their resource and job model, there
is a need for a model describing broker characteristics in order to compare, in-
teroperate and manage different resource brokers, schedulers. We use the same
notations for building up the model.

The metadata to be stored regarding resource brokers are expressed through
<attribute,value> pairs – we denote with P the set of all possible such pairs.
A broker denoted by B ⊆ P is modeled as a pair:

<brokerID,description>,

where brokerID is a unique identifier, and description ⊆ P is a set of attribute/
value pairs, which contains metadata of basic and special properties. Figure 2
shows the tree of pairs in P , which defines the whole model.
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Figure 2. Structure of the Data Model for resource broker capabilities

3.2 Matchmaking function
In order to present a usage scenario we define a function over this model

with the following structure:

µ: T × B i → B, where T is a set of tasks [17] (here: jobs) and B is a
set of brokers.

For t ∈ T , b0, ... ,bn ∈ B, n≥0:

µ(t , (b1, b2, b3)) = b2 means that for a job denoted by t matched with
brokers denoted by b1, b2 and b3 the matchmaking function returns b2,
which is the fittest broker for the job. That means the returned broker can
most efficiently execute the job. (Note that b0 can be a special element,
which is an empty description. This is the return value, when no broker
fits the job requirements.)

In our scenario shown in the following section a JSDL of the job is denoted
by t , and a BPDL of a broker by bi.

4. BPDL: One possible implementation of the data model
4.1 The Broker Property Description Language

Based on the data model introduced in the previous section we have created an
XML-based language called BPDL (Broker Property Description Language).
The common subset of the individual broker properties are the basic properties:
the supported middlewares, job types, certificates, interfaces and monitoring
issues. (See the representation of this schema in Figure 3-7.) There are also
special ones, such as remote file handling, fault tolerant features, agreement
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Figure 3. General XML schema of the Broker Property Description Language
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Figure 4. Elements of the BPDL XML schema describing policies, agreements and interfaces
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Figure 5. Elements of the BPDL XML schema describing middlewares
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Figure 6. Elements of the BPDL XML schema describing monitoring and security types
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Figure 7. Elements of the BPDL XML schema describing performance metrics

support, QoS support, performance metrics and various scheduling policies.
The union of these properties forms a complete broker description document
that can be filled out and regularly updated for each utilized resource broker.
The special any##other type describes a mechanism that can be used to extend
the schema with custom elements and attributes.

Notice that this language can also be used for peer-to-peer communication
and identification in a decentralized architecture. In particular, the agreements
are another mechanism typically used in this kind of architectures to broaden a
domain or as a communication mechanism during the negotiation process.

4.2 Scenario for BPDL utilization in the Meta-Broker
When some years ago grid developers began to implement Grid Resource

Brokers to solve the problem of resource management and scheduling, the first
challenge was matchmaking: matching user jobs to grid resources. Now we
are facing the same challenge at a higher level: we need to automate broker
selection for job requests. The matchmaking process of the Meta-Broker uses
the previously introduced language for matching the user requests to the de-
scription of the interconnected brokers. During broker utilization the successful
submissions and failures should be tracked, and regarding these events a rank
should be modified for each special attribute in the BPDL of the appropriate
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broker. The JSDL contains the user request – this supposed to be an exact
specification of the user’s job. During matchmaking the following steps should
be taken to find the fittest broker:

1 First the Matchmaker compares the JSDL of the actual job to the BPDL
of the registered resource brokers. First the basic attributes are matched
against the basic properties: this selection determines a group of brokers
that are able to submit the job.

2 In the second phase those brokers are kept, which are able to fulfill the
special requirement attributes of the job (these capabilities are looked up
from the BPDL).

3 Finally a priority list of the remaining brokers is created taking into ac-
count the ranks (stored for the requested features). The first resource
broker is chosen from the list.

Since meta-brokering is in a premature state yet, during design and devel-
opment we need to take into account the existing standards, data models, etc.;
furthermore we need to create the missing ones. These tools should be general
enough to allow the researchers to implement new grid scheduling and resource
management policies based on complex criteria. Therefore we designed this
data model incorporating metrics that can be used by future research (not only
in matchmaking):

Broker performance metrics (e.g. average waiting time, throughput),

Broker historic data,

Reputation of brokers (e.g. achieved QoS),

Level of availability/reliability (of brokers and resources behind the bro-
kers).

4.3 BPDL utilization in the eNANOS Broker
The eNANOS Grid Resource Broker has been recently redesigned to support

new functionalities, for instance the interoperability between different brokers
[19]. The BPDL presented in this paper provides a powerful schema to spec-
ify broker capabilities. Currently we are in the phase of implementing the
new version of the broker extended with the BPDL schema. Some BPDL el-
ements have already been implemented (e.g. SchedulingPolicy or Agreement
elements), some are currently being included (e.g. PerformanceMetrics or Se-
curity elements) and some others will be provided in the future (e.g. Monitoring
element). We use BPDL documents for managing three different kinds of in-
formation:
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Static information: this data shows the never changing characteristics of
the broker that are hard-coded into the Broker Service. An example is
the BrokerName element.

Configuration information: both the user and the administrator are able
to change this data in runtime. We use those attributes in the schema
that define the configuration of the broker. Basically, these elements
incorporate the addresses and details of the services of the broker (e.g.
Information Service, Dispatching Service, etc.), its agreements and a set
of other attribute-value pairs. Some examples in this category are the
Agreement and the SchedulingPolicy elements.

Runtime information: this information is obtained from the system sta-
tus (e.g. execution of jobs) that can change dynamically. We use the
internal services of the broker to obtain the majority of the runtime infor-
mation. We are also planning to incorporate some information regarding
the progress and performance of jobs through so called progress and
performance indicators [18]. An example used in this category is the
PerformanceMetrics element.

The BPDL language is used for different purposes in the eNANOS Grid Bro-
ker. For interoperability, we will use agreements at the center/broker/VO level.
Our first approach aims at selecting resources during the resource selection
phase with the help of several broker instances operating in different VOs. We
submit the job to the one that utilizes the best resource. Later on we will also
enable broker utilization through a common API (see [19] for more details).
Moreover we can use the information stored in the BPDL directly for monitor-
ing purposes. In the near future, we plan to investigate broker selection policies
(meta-brokering), after the development of this new broker infrastructure will
be finished.

5. Conclusions
The introduced meta-brokering approach opens a new way for interoperabil-

ity support. Creating such a Meta-Broker, standardized and extensible descrip-
tion languages are needed.

In this paper we proposed a formalization of a data model for storing grid
resource broker capabilities and showed how an implementation of this model
can be realized and used in a matchmaking scenario. We have presented an XML
schema for the Broker Property Description Language that implements the data
model. Following our approach, the current Grid Brokers should implement the
BDPL (it means only using it to describe their own capabilities, not to modify
the whole system) to become a member of federation of Grid Brokers managed
by a global meta-brokering system.
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We also have presented how to support the BPDL in the design of a real Grid
Broker, how to implementing it and benefit of its usage for brokering purposes
(e.g. agreements).

This work enhances establishing better interoperability among the current
production grids and user groups; therefore it enables more beneficial resource
utilization and collaboration by global resource management and scheduling. It
also considers other mechanisms to achieve collaborative communities in a de-
centralized environment such as agreements mechanism. Research in this area
should focus on the development of infrastructures enabling interoperability
achieved by defining new standards, creating sophisticated scheduling policies
in terms of global resource usage (e.g. load balancing across multiple VOs) to
allow future grids to be more transparent and efficient.
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1. Introduction
The Grid was originally proposed as a global computational infrastructure to

solve grand-challenge, computational intensive problems [1]. The first decade
of grid research aimed at creating relatively reliable infrastructures to serve
researchers and attract users. The present grid systems are mature enough to
be used in production, therefore current research efforts are focusing on user
requirements and interoperability. As grid technology matures the number of
production grids dynamically increases, therefore end-users typically access
grid resources through resource management systems or grid portals that serve
as both application developer and executor environments. Unfortunately, these
tools are typically tightly coupled to one specific grid environment and do not
provide multi-grid support. Even if a tool is connected to multiple grids, appli-
cations that utilize services from these grids simultaneously are not supported.
To enhance the manageability of grid resources and users, Virtual Organizations
(VO) were founded. This kind of grouping has started an isolation process in
grid development, too. Interoperability among these islands will play an im-
portant role in grid research and usage.

There have been several attempts to make existing production Grids and grid
services interoperable. Grid researchers seem to follow two different ways in
the area of resource management:

The first one is to extend existing resource brokers with multiple grid mid-
dleware support. The Gridbus Grid Service Broker [7] is designed for compu-
tational and data-grid applications and supports all Globus [2] [3] middleware
and Unicore [4] in experimental phase. Gridway [8] has been developed in a
Globus incubation project, therefore it supports all Globus versions, and it also
supports EGEE [5] [6] utilization. The JSS [9] is a decentralized resource bro-
ker that is able to utilize both GT4 [3] and NorduGrid [10] resources. GTbroker
[11] is a lightweight Globus-based grid broker that can simultaneously utilize
Globus and LCG-2 [5] resources. The GRIP [12] broker is the one that tries to
support interoperability with a semantic matching of the resource descriptions
enabling job submissions to Globus and Unicore sites. This summary shows
that these tools are forming separate user groups, again. They use different job
descriptions and do not communicate with each other: stopping this separation
process would need high efforts by all parties.

The second approach is to provide a higher level tool that supports different
middleware services, including job submission, brokering or storage access.
Possible instances of this approach are grid portals. The well known ones
are Pegasus [13], GridFlow [14], K-Wf [15] grid portal, SPA portal of the
HPC-Europa Project [16] and the P-GRADE portal [17]. Though the first 3
examples provide high-level access to grid services, they usually operate only
on one middleware. The SPA (Single Point of Access) is a portal component
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that enables brokers to be utilized through plug-in interfaces. These interface
methods need to be used by all brokers, providing the same abstract function-
ality. The P-GRADE Portal is a workflow-oriented multi-grid portal with the
main goal to support all stages of grid workflow development and execution
processes. It supports the execution of these workflows in multiple Globus-,
and EGEE-based computational grids relying on user credentials. This portal
is interfacing several grid brokers to reach the resources of different grids in an
automated way. Another instance of this approach is a meta-scheduler, which
coordinates some communication process between existing schedulers. A part
of the SPA operates in a similar way, but it does not take into account the dif-
ferent broker properties, it rather acts as a job submitter. The GSA-RG of OGF
[18] is currently working on a project enabling grid scheduler interaction. They
try to define a common interface among schedulers enhancing interoperability.
The greatest problem is that the existing schedulers/brokers need to support this
interface, so they need to be modified.

We have already introduced the meta-brokering approach in [23], where we
have stated the basic requirements that are necessary to create a higher level
resource management system. In the following sections of this paper we show
how the implementation of this system can be realized (which is an instance of
the second, above mentioned approach).

Figure 1. The Meta-Broker Architecture
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2. Meta-Brokering Approach for high-level resource
management

Multiple utilization of the existing, widely used and reliable resource brokers
and solving grid interoperability issues through them are still open issues in
resource management. Users usually have more certificates to access different
VOs. When a user wants to run an application on the grid, he/she needs to
answer the following question: which VO, which broker to choose for my
specific application? Just like users needed Resource Brokers to choose proper
resources within a VO, now they need a meta-brokering service to decide, which
broker (or VO) is the best for them and also to hide the differences of utilizing
them. The solution of this problem is particularly important when a workflow
is executed as a parameter sweep application. Without a meta-broker the user
(portal) is not able to dynamically and evenly distribute the various workflow
runs among the connected VOs [19]. Figure 1. shows the revised architecture
of a Meta-Broker that enables the users to access resources of different grids
through their own brokers.

Figure 2. Languages of the Meta-Broker: JSDL and BPDL

2.1 Languages for understanding each-other
Heterogeneity appeared not only in the fabric layer of Grids, but also in the

middleware. Even components and services of the same middleware may sup-
port different ways for accessing them. After a point this variety makes the
users’ and developers’ life miserable. Languages are one of the most important
factors of communication. Different resource management systems use differ-
ent resource specification languages like RSL, JDL, etc. These documents need
to be written by the users to specify all kinds of job-related requirements and
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data. The GGF has already started to take several steps towards interoperabil-
ity among these coordinating components, and developed a standard resource
specification language called JSDL [20]. As the JSDL is general enough to
describe jobs of different grids and brokers, we have chosen this to be the job
description language of the Meta-Broker. Besides describing user jobs, we also
need to describe resource brokers in order to make difference among them.
These brokers have various features for supporting different user needs. These
needs should be able to be expressed in the users JSDL, and identified by the
Meta-Broker for each corresponding broker. Therefore we proposed a Bro-
ker Property Description Language (BPDL) [22] – similarly to the JSDL –, to
store metadata about brokers. These two kinds of languages are used by the
Meta-Broker to communicate with the inner and outer world (Figure 2).

Table 1. A subset of special job description language attributes.

RSL xRSL JDL JSDL
(GTbroker) (NorduGrid) (EGEE)

(*sched=random*) (*sched=random*) FuzzyRank=true; extension
(*sched=CPU/Mem-
ory/Disk*)

(*sched=CPU/
Memory/Disk*)

rank=other.GlueHost-
ProcessorClockSpeed/
GlueHostMain-
MemoryRAMSize/
GlueSAState-
AvailableSpace;

extension

(*minMemory=int*),
(*mindisk=int*)

(memory=int),
(disk=int)

Requirements:
(GlueHostMain-
MemoryRAMSize>int);
anyMatch(other.sto-
rage.CloseSEs,target.
GlueSAStateAvailable-
Space>int);

<resources>
<jsdl:Individual-
DiskSpace>
<jsdl:Individual-
PhysicalMemory>
... </resources>

(*skiptime=int*) (*skiptime=int*) /*skiptime=int*/ extension
rescheduling
by default

(rerun=max.5) RetryCount=max.10; extension

2.1.1 JSDL for job requirements. The Translator components of the
Meta-Broker are responsible for translating the resource specification language
defined by the user to the language of the appropriate resource broker that the
Meta-Broker selects to use for a given job. Once a utilized broker is capable of
supporting the JSDL standard, the corresponding Translator component could
be removed from the Meta-Broker (since the input job description is written
in JSDL). From all these job specification languages a subset of basic job at-
tributes can be chosen, which can be denoted relatively in the same way in
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each document. The translation of these parts is almost trivial. The rest of
these attributes describe special job handling, various scheduling features and
remote storage access. Generally these cases can hardly be matched among
the different systems, because only few of them support the same solution. We
gathered these special attributes of the different job description languages. A
sample collection of a minimal set of languages can be seen in Table 1.

If an attribute of a job description language cannot be expressed in JSDL,
we specify it as an extension. These attributes are collected and specified in a
proposed JSDL extension called jsdl-metabroker (the overview of the schema
can be seen in Figure 3). Regarding other languages we express the missing
attribute in comments in order to keep the translations consistent.

Figure 3. General XML schema of the jsdl-metabroker JSDL extension

2.1.2 BPDL for broker properties. For describing broker capabilities
we proposed a language similar to JSDL. We have created a taxonomy of the
recent Resource Brokers [21] – from this survey we could easily identify the
relevant properties. This information was used to create the attributes of this
XML-based language called BPDL [22]. The common subset of the individual
broker properties are the basic properties: the supported middleware types, job
types, certificates, job descriptions, interfaces. There are also special ones, such
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as remote file handling, fault tolerant features, agreement support and various
scheduling policies. The overview of the schema can be seen in Figure 4. The
union of these properties forms a complete broker description document that
can be filled out and regularly updated for each utilized resource broker.

2.2 Information repository and matchmaking
The Information Collector stores the data of the reachable brokers and his-

torical data of the previous submissions. This information shows whether the
chosen broker is available, or how reliable its services are. The previously in-
troduced languages are used for matching the user requests to the description
of the interconnected brokers, which is the role of the Matchmaker component.
During broker utilization the successful submissions and failures are tracked,
and regarding these events a rank is modified for each special attribute in the
BPDL of the appropriate broker. The JSDL contains the user request – this
supposed to be an exact specification of the user’s job, using the extended at-
tributes. The load of the resources behind the brokers is also taken into account
to help the Matchmaker to select the proper environment for the actual job.
When too many similar jobs are needed to be handled by the Meta-Broker the
so-called best effort matchmaking may flood a broker and its grid. That is the
main reason, why load balancing is an important issue. In order to cope with
this problem, there are IS Agents in the Information Collector, which regularly
check the load of the underlying grids of each connected resource broker, and
store this data. With this additional information the matchmaking process can
adapt to the load of the utilized grids. During matchmaking the following steps
are taken to find the fittest broker:

1 First the Matchmaker compares the JSDL of the actual job to the BPDL
of the registered resource brokers. First the basic attributes are matched
against the basic properties: this selection determines a group of brokers
that are able to submit the job.

2 In the second phase those brokers are kept, which are able to fulfill the
special requirement attributes of the job (these capabilities are looked up
from the BPDL).

3 Finally a priority list of the remaining brokers is created taking into ac-
count the ranks (stored for the requested features) and the load of the
underlying grid of each broker. The first resource broker is chosen from
the list.

2.3 How to reach the Resource Brokers
Mainly two different scenarios can be done with our proposed Meta-Broker.

The first one allows the users or portals to invoke and track the brokers them-
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Figure 4. General XML schema of the BPDL

selves. In this case only the JSDL document of a job needs to be provided for
the Meta-Broker, and it responds with the name of the matched broker and its
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own job description (or with a message that none of the registered brokers is
able to fulfill the specified job requirements). Finally the user/portal needs to
provide the result of the submission to the Meta-Broker (to modify the broker
property ranks). This limited operation is useful for systems that already have
reliable connections to resource brokers and would like to use this service as
broker-filtering and inter-grid load balancing. Currently these issues are not
taken into account in grid portals. Even multi-grid access is rarely supported,
where the users need to choose from a list of resource brokers. Furthermore
this utilization can be achieved with minimal adaptation efforts and requires
less data transfers. (See the direct user-broker communication in Figure 1.)

In the second scenario the utilization of the resource brokers is done by the
Meta-Broker. The Invokers are broker-specific components: they communicate
with the interconnected brokers, invoking them with job requests and collecting
the results. Data handling is also an important task of this component. After the
user uploaded the job, proxy and input files to the Meta-Broker, the Matchmaker
component tries to find a proper broker for the request. If no good broker was
found, the request is rejected, otherwise the JSDL is translated to the language
of the selected broker. The responsible Invoker takes care of transferring the
necessary files to the selected grid environment. After job submission it stages
back the output files, and upgrades the historical data stored in the Information
Collector with the log of the utilized broker. The core component of the Meta-
Broker is responsible for managing the communication (information and data
exchange) among the other components. The communication to the outer world
is also done by this part through its web-service interface.

The user’s job description is independent from the execution environment,
and the Meta-Broker does not need to know how to access resources of different
grids. It is the task of the interconnected brokers to perform the actual job
submissions and to find the best resource within their scopes (the VOs they
have access to). The Meta-Broker only needs to communicate with the users
(via its web-service interface) and the brokers (via the Invokers). In this sense
meta-brokering stands for brokering over resource brokers instead of resources.

Notice that the same way as the resource specification language was stan-
dardized, a communication protocol between the Meta-Broker and various bro-
kers would be worth standardizing. Once it is done and brokers implement
that standard the Invoker components of the Meta-Broker Architecture can be
removed. In a well standardized multi-grid environment the Meta-Broker Ar-
chitecture will contain only three components: Meta-Broker, Matchmaker and
Information Collector.

The P-GRADE Portal already has interfaces to several grid brokers providing
multi-grid usage. Our future work aims at extending the portal with the proposed
meta-brokering service to ease the addition of further resource brokers and to
make a better utilization of its multi-grid environment (Figure 5).
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Figure 5. Switching from Multiple Brokering to Meta-Broker Support

3. Conclusions
The introduced meta-brokering approach opens a new way for interoperabil-

ity support. The Meta-Broker itself is a standalone Web-Service that can serve
both users and portals. We showed in the paper how such a service can be
realized based on the latest OGF standards.

The design and the architecture of the Grid Meta-Broker enable a higher level
resource management by utilizing resource brokers of different grid middleware
systems. This service can act as a bridge among the separated islands of the
current production Grids and user groups, therefore it enables more beneficial
resource utilization and collaboration.

Recently P-GRADE portal was extended with parameter sweep execution
management of workflows [19]. This new and eagerly waited feature raised
the need for dynamic, well-balanced distribution of workflows and workflow
components among several grids. In the future we will use the Meta-Broker to
perform multi-broker utilization.
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Abstract In this paper, we consider the problem of data replication and its relationship with
scheduling in the context of the LHC Grid. As testing replication strategies in real
conditions is almost impossible because of production constraints, we propose
a simulation-based approach. We study existing grid simulators and introduce
a new simulator called LCGSim that should give more accurate results. We
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1. Introduction
The goal of the LHC Grid (LCG) project is to build a grid platform for

High Energy Physics experiments. Its purpose is to provide the computational
and storage resources needed to manage the data that will be produced by the
future Large Hadron Collider (LHC) built near Geneva in Switzerland [1]. The
platform is required to provide about 15 PetaBytes of persistent storage per
year and a computational capacity of about 140 million SPECint2000 which
is the equivalent of 82 thousand Pentium 4 processors [2]. Deployed on the
infrastructures of EGEE [3], NorduGrid [4] and OSG [5], the LCG platform
counts actually about 200 sites distributed world-wide with some 32 thousand
processors and 10 PetaBytes of storage.

The LCG middleware is composed of multiple grid services, each contribut-
ing to the good operation of the platform. The basic services include user
authentication and security, virtual organization management, data transfer and
storage, file management, monitoring and finally job scheduling. User au-
thentication controls users’ access rights to computing and storage resources.
Virtual organizations isolate users, data and resources associated with different
physics experiments. As there should be no losses of data, data services ensure
reliable transfers among the Large Hadron Collider and the LCG storage sites.
File management provides a higher level view of the data and simplifies file
searches and localization. Monitoring allows for supervising the grid opera-
tion. Finally, job scheduling defines the resources and the execution order to
be used for physics computations.

Scheduling is a central service, as it interacts with all the others in order to
provide efficient and optimal grid operation. It uses monitoring information
in order to check upon resource availability and elect suitable resources. It
restrains the set of considered resources using information provided by the
authentication and security services. It consults the file management services
and takes into account file location in order to compare performances and choose
between remote data access and replication.

In most existing grid platforms, the co-ordination between scheduling and
other grid services is done in components called resource brokers. Their role is
to match jobs’ requirements to grid resources characteristics and to provide an
acceptable compromise among different optimizing factors. As network usage
should be optimized, brokers should minimise data transfers. They should
schedule computations in a way that prevents idle CPU time and thus maximises
CPU usage. When remote data access proves to be time or resource expensive,
the scheduling policies should opt for replication while taking into account
available storage. Finally, brokers should juggle with all this factors in order to
minimise job execution time and maximise job throughput.
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Experimenting with different scheduling policies in the LHC grid is a com-
plex challenge. LCG sites have diverse hardware and software configurations
and modifying the LCG global scheduling would need important software
changes and reconfigurations. Now, software updates are expensive in terms of
development and reconfiguration is costly in terms of administration and site
production time. Knowing that LCG is a production platform meant to start
full operation at the end of 2007, it is difficult to engage human and financial
resources for providing scheduling policies just for the sake of testing. So, how
should the LCG scheduling policies be chosen and validated?

A promising approach to this problem is given by simulation. Simulation
could work with a model of the LCG platform which will represent an LCG
environment freed from all low-level installation and configuration aspects. If
the used LCG model is realistic, it would be possible to implement and to
evaluate the performances of different LCG scheduling policies.

In this paper we discuss existing approaches to designing and evaluating grid
scheduling policies. We consider both scheduling and replication as schedul-
ing performances strongly depend on data distribution and on the possibilities
for data replication. We focus on existing grid simulators and show that the
proposed models have limited applicability to the LCG case. We propose a
new LCG simulator, called LCGSim, whose objective is to provide a better
model of the real platform. We discuss existing LCG simulators such as Optor-
Sim [6] and Monarc II [7], present the LCGSim principles and implementation
and present some preliminary results.

The article is organized as follows. Section 2 presents existing approaches to
scheduling design and evaluation. Section 3 gives a short overview of the LCG
platform. In section 4, we introduce the LCGSim simulator and its implemen-
tation. The scenarii used for the tests and the results of LCGSim are detailed in
section 5. We discuss LCGSim limitations and future work in section 6 before
concluding in section 7.

2. Scheduling in Grids
There are two major approaches to scheduling in grids. The first one, used

in existing grid platforms, consists in proposing a generic scheduling archi-
tecture and implementing a small number of scheduling heuristics. As most
grid platforms interconnect clusters having their own local schedulers, existing
middleware propose a two-level scheduling architecture where meta-schedulers
take global decisions before delegating to chosen local schedulers. Examples
of such systems are Condor-G [8], VIOLA [9], Nimrod/G [10] and Gridbus
[11]. Condor-G, used in Globus [12] and VDT [13], proposes a resource bro-
ker architecture which reconciles jobs requirements and available resources
using a matching mechanism called ClassAds [14]. ClassAds can express jobs
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requirements as well as static and dynamic resource characteristics but their
usage framework is left to middleware designers. VIOLA defines a generic ne-
gotiation protocol based on matching requirements to available resources and
establishing QoS offers. Gridbus defines the components of a generic resource
broker architecture including interpreters of application requirements, creden-
tials and service policies, core services for scheduling and monitoring, execution
feedback services, etc. Finally, Nimrod/G proposes a generic meta-scheduler
architecture with an accent on economic-oriented scheduling strategies. All of
these systems propose generic scheduling toolkits and neither enforce a partic-
ular scheduling policy.

The second approach to scheduling is validation through simulation.
The approach is adopted in an important number of projects including
ChicagoSim [15], Monarc [7], EDGSim [16], GridSim [17], SimGrid [18],
BeoSim [19], etc. However, only few simulators take into account both aspects
of scheduling and replication. We can namely cite GridNet [20], ChicagoSim,
OptorSim [21] [22] and Monarc.

GridNet [20] is based on the ns [23] network simulator and uses a hierarchical
grid model in which each grid site is represented as a node. The nodes are
connected by a tree with all the children of each node connected in a ring. Each
site has a replica manager that uses a cost function in order to decide whether
a file is worth replicating. The authors show that performances are greatly
increased if popular files are replicated in a cache big enough to contain all
popular files. However, GridNet’s tree model is not applicable to LCG.

In ChicagoSim [15] scheduling is managed with Dataset, External and In-
ternal schedulers. Dataset schedulers use local popularity information in order
to push local datasets to other sites. External schedulers decide which site jobs
submitted locally will be computed on. Finally, Internal schedulers manage
local site job queues. The authors investigate several replication cases but their
results are not applicable to LCG because of their services model.

Monarc II [7] provides a generic framework for modeling and simulating
distributed systems behaviour. It is structured in layers where the basic layer
contains the simulator engine and resources modeling blocks. There is an
additional layer reflecting the LCG architecture. We found two major problems
with Monarc II. First, it does not focus on replication management and hence
does not provide a framework for easy replication strategy configuration. The
second reason is that Monarc II models in detail some real platform phenomena
while ignoring other ones. In order to change these parameters, it would have
been necessary to add an additional software layer and possibly to change the
core Monarc engine. This would have been a problem as the simulation engine
is not publicly available. Moreover there are no new Monarc II developments
since 2004.
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The OptorSim simulator [21] [22] is designed to explore replication and
scheduling strategies in the LHC Grid. It provides several statistics like the
mean job time, the resource usage ratio or the number of replications. However,
OptorSim’s model has several drawbacks. First, the OptorSim model ignores
the internal structure of a site. There is no modeling of the network links or the
data transfers in a site and network latency is considered to be null. There’s no
simulation of the batch scheduling, either. Another simplification point is that
on a given link, the bandwidth between two communications is shared evenly
no matter what the bottleneck is. For example, on a 100Mb/s link, if a file is
transferred at 10Mb/s, another transfer would have a bandwidth of 50 Mb/s and
not 90 Mb/s. OptorSim also considers that all communications that are not file
transfers take place in no time.

3. The LHC Grid
The LHC Grid is designed as a 3-tier hierarchical grid(cf Figure 1). The

Tier 0 (T0) includes only one site which is located at CERN. The role of this
site is to act as a main storage for all LHC data. The Tier 1 (T1) is composed
of 11 regional centres located in Europe, USA and Asia. T1 centres provide
backup storage for parts of the LHC data and important computational resources.
Their role is provide continuous service, guarantee data availability and run all
kinds of analysis, filtering and simulation jobs. The Tier 2 (T2) is composed of
sites with limited computational and storage resources provided by laboratories,
research institutes and computational centres. T1 centres are connected to T0 by
dedicated 10 Gb/sec connections while T1-T2 connections use local networks.

Jobs that are executed on the LHC Grid have different types depending on
the physical experience they belong to. The job type defines the possible files
to be used as well as the computation time needed for the treatment of a data
unit.

Figure 1. The LCG 3-Tier Architecture

The main services that compose LCG middleware include the Storage
Element (SE), the Compute Element (CE), the Resource Broker, the
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Information Service, the File Management System, the Data Access
System and the Authentication Service (cf. Figure 2).

Figure 2. Main Services in LCG

A grid site typically provides a CE which manages the site’s computational
resources, called Worker Nodes. The CE runs a batch scheduler, accepts the
jobs submitted to the site and submits them to the nodes of the local cluster.

A grid site may provide a SE service if it has reliable mass storage resources.
The SE provides an uniform interface for heterogeneous Storage Nodes and
interacts with the Data Access service if a file need to be remotely accessed
or copied.

Each grid site runs an Information Service which interacts with un-
derlying monitoring services. This service reflects all the static and dynamic
resource characteristics for the site and publishes the information at a global
level. The Central Information Service is a collection of all the infor-
mation gathered by the site information services.

The Resource Broker is a global service responsible for finding suitable
execution sites for user jobs. The LCG grid runs multiple Resource Brokers
referencing collections of grid sites. It is possible that different Resource
Brokers send jobs to the same grid sites.

The File Management System provides a logical organization of LHC
and user data. At the lowest level, files are stored at some grid site and are
identified by a physical file name. However, this information is hidden from
users which manipulate a File Catalog Service and work with logical file
names. The conversion of logical file names to physical ones, as well as the lo-
calization of files and their replicas is done by the File Catalogue Service
in a transparent way.



Managing Scheduling and Replication in the LHC Grid 71

The workflow is the following (cf. Figure 2). When a user submits a job
through a user interface, the interface identifies the user (1) and sends the
job to the Resource Broker (2). The Resource Broker analyses the job’s
requirements, consults the File Catalog in order to localise the files the job
needs (3) and obtains information about the sites containing these files through
the global Information Service (4). It chooses the site containing the files
and having the most available computational resources and submits the job to
it (5). The job is locally scheduled and executed and its result is sent back to
the Resource Broker (6).

4. The LCGSim Simulator
The goal of the LCGSim tool is to continue research on simulating the LHC

grid and provide a more realistic model for studying scheduling and replica-
tion strategies. We decided to start from the simple OptorSim model and to
add features modeling the internal site structure and network management. In
order to add a network model, we decided to use the SimGrid [18] framework
which has proven to provide realistic and meaningful simulation results. In the
following sections we first introduce SimGrid and then describe our LCGSim
implementation.

4.1 The SimGrid Framework
SimGrid [18] is a toolkit that provides core functionality for the simulation of

distributed applications in heterogeneous distributed environments. It uses an
advanced network model described in [24]. In this model, bandwidth is shared
proportionally between communications on bottleneck links.

In SimGrid, the platform is described as a set of hosts connected by routes.
Hosts have a computational power and manipulate local data. A route between
two hosts is a list of links characterized by a bandwidth and a latency.

The simulated application is described as a set of agents running on hosts.
Agents are characterized by some code and data and may communicate among
themselves. If agents implement control features of the application, the calcu-
lation is modelled as set of tasks. A task is characterized by a computation time,
a message size and some private data. The computation time gives the duration
of the task, the message size characterizes the message needed for moving the
task from one host to another and the private data is the data the task works on.

4.2 Model of the LCG Platform
Our model is very close to the OptorSim’s one.In other terms, it represents

the Resource Broker, the File Management Catalog, the CE and the SE
services and ignores the internals of a grid site. We have modeled the services
as a set of SimGrid agents. We have have implemented the Resource Broker
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and the File Catalog are implemented as centralized services. Compared to
OptorSim, we have added a global Information Service.

Figure 3. The LCGSim Architecture

When a site runs a SE service, its SimGrid model includes a host running
two agents. The first agent is called Storage Manager and manages the local
storage space. It decides when a file must be inserted (possibly duplicated)
or deleted. The second agent, called Storage Optimiser, interacts with the
File Catalog in order to obtain information about file replicas. It probes the
network and measures the round trip time in order to calculate file access cost.

When a site provides computational resources, it runs a CE service modeled
as a pair of agents running on two distinct hosts: a CE Manager and a Job
Handler. The CE Manager acts as a frontal waiting for jobs and managing
the waiting queue. The Job Handler fetches one job at a time from the CE
Manager and executes it. After terminating a job, it sends a notification to the
Resource Broker.

The implemented workflow is as follows (cf 3). When a job arrives, it is
submitted to the Resource Broker (1). The Resource Broker queries the
Information Service (2) for the CE with the shortest job queue and sends
the job to the corresponding site (3). The CE Manager listens for jobs sent
by the Resource Broker and when one arrives, puts it in the waiting queue
and sends an update to the Information Service (4). When all the jobs
submitted previously have terminated, the job is fetched by the Job Handler
(5). For each file associated with the job, the Job Handler sends a request to
the Storage Optimiser (6) and waits for the file to become available locally.
If the file is not present in the local mass storage, the Storage Optimiser gets
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a replica (7) before uploading it to the Job Handler host. If the file is present
locally, it is immediately uploaded.

The Storage Optimiser knows whether a file is present locally by ask-
ing the local Storage Manager. When the file is not present, the Storage
Optimiser will address itself to the Replica Catalogue for a list of the
available file replicas. The list will be sorted by the Storage Optimiser and
used by the Storage Manager in order to rapidly download a replica. When
a new replica is created, it is registered in the local and global catalogs.

We have implemented three replication strategies for the Storage Manager.
The first one is the simplest and involves no replication i.e files that are not
locally available are accessed remotely. The second strategy is a "Least Recently
Used" (LRU) one. With this strategy, remote files needed for computation are
systematically duplicated and when space is needed, the least recently used
files are deleted. The last strategy implements a "Least Frequently Used" (LFU)
approach. Remote files are systematically duplicated and when space is needed,
the least frequently used files are deleted.

The user needs to supply several input parameters to the simulator. First,
he has to give a description of the grid topology and of job types. He/she will
also need to provide the list of jobs with their associated files, the number of
files per job and the computing time associated to jobs. There should also be a
definition of the initial file distribution across grid sites. Finally, the user is to
choose the replication strategy that will be used and the interval between job
submissions.

As we wanted to compare LCGSim to OptorSim, we implemented the same
output measures. Like OptorSim, LCGSim provides both local (i.e per site)
and global statistics. Local statistics for the SE include the number of local
and remote file accesses, the number of replications and a coefficient called
ENU (Effective Network Usage) that measures the efficiency of a replication
strategy. This coefficient is defined as renu = Nremote file access+Nreplication

Nremote file access+Nlocal file access
.

The lower the ENU is, the better the strategy is. For the CE, LCGSim supplies
the number of computed tasks, the proportion of time spent in computing and
in waiting for file transfers along with the mean job computing time. LCGSim
also calculates the total job as a sum of all computing and waiting job times.
Global statistics are the same as local ones but averaged for all the sites.

5. Experimental Results
We have first experimented with OptorSim alone. We ran OptorSim for

1 000, 10 000 and 100 000 jobs and compared all the replication strategies
implemented in the simulator. We confirm the results given in [22] indicating
that replication decreases job execution time and that simple strategies are more
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efficient. However, we observe that with realistic job numbers i.e 100 000 the
difference between strategies becomes insignificant.

The goal of the second experiment has been to compare the results of Op-
torSim and LCGSim. We used the scenario from [22] as it reflects well the
LCG topology and operation. However with this realistic topology, we have
been unable to obtain results with OptorSim due to simulator crashes. As a
consequence, we have used a reduced grid described in the next section.

5.1 Platform configuration
Our grid configuration includes 18 sites(cf Figure 4). We find the CERN site

(T0) and 4 T1 sites, each T1 site being connected to a small number (from 3 to
5) T2 sites.

Figure 4. Simplified LCG Grid

Job Nb of files Files per job
alice-pp 2 500 3
alice-hi 1 250 13
atlas 10 000 5
cms 3 750 3
lhcb-small 3 750 4
lhcb-big 3 750 38

Figure 5. Jobs and Associated Files

Compared to the scenario described in [22], we scaled down the total number
of files and the number of files per job. The data consists of 25,000 files of 2GB
each located initially at CERN. There are six job types (cf Table 5).

We ran the scenario by modulating the number of jobs, as well as the repli-
cation strategies. We tested the no replication, LRU and LFU strategies for a
workload of 1000, 10 000 and 100 000 jobs.

5.2 Results
With both simulators, we consider three metrics: the mean job completion

time, the mean CE usage and the ENU.
As can be seen on Figure 6, the mean total job times results are grouped per

simulator. We observe that LCGSim results are 10 000 times higher than those
of OptorSim.

A possible explanation for this huge difference is that the LCGSim model
takes into account network latencies and TCP acknowledgments. Indeed files
are transfered via TCP connections so if the latency is important, TCP acknowl-
edgments will slow the emitter and the rate of transmission will decrease. This
is neglected in OptorSim but not in LCGSim.
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Figure 6. Mean Total Job Time Compar-
ison for LCGSim and OptorSim

Figure 7. Mean Job Time without latency

To verify this hypothesis, we ran the same experiments on LCGSim but with
latencies equal to 0. The mean job time for 10 000 jobs is shown on Figure 7.
We can see that the mean job times for OptorSim and LCGSim become almost
the same which confirms the hypothesis.

Figure 8. Mean CE Usage Comparison
for LCGSim and OptorSim

Figure 9. ENU Comparison for LCGSim
and OptorSim

With or without latency, we can see that, as can be expected, using replication
reduces the mean job time. We can also see on Figure 6 that replication reduces
more the mean job time for a higher number of jobs which means that replication
becomes more efficient when the number of jobs increases.

Results for the ENU (cf. Figure 9) show the same trend. Replication reduces
the ENU, ie. the number of transfers compared to the number of file accesses,
and it has a greater impact when the number of jobs increases. We can also
notice that both simulators don’t give the same value but that the difference
becomes smaller when there are more jobs. This difference may be explained
by the variations in the implementation of the two simulators. For example,
the random number generators aren’t the same which leads to different jobs
creations and different distributions on the sites.
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As for comparing replication strategies, our results show very small or even
no differences between OptorSim and LCGSim predictions. We need further
investigations in order to really compare replication strategies.

6. Future Work
We have multiple ideas of continuing the work on LCGSim. At the validation

level, we would like to confront the simulator with real platform results. At the
model level, we are interested in zooming at the internal structure of a site and
adding batch scheduling. To this purpose, we plan to use SimBatch [25], an
extension of SimGrid. Finally, we are interested in investigating other measures
such as measures detecting bottlenecks.

7. Conclusion
In this paper, we tackled the problem of scheduling and replication strategy

simulation in the LHC grid. We presented LCGSim, a new LCG simulator
with an objective of providing a realistic LCG model. We described a first im-
plementation inspired by the model of an existing simulator, OptorSim. Most
notably, we used the SimGrid toolkit to better model inter- and intra-site com-
munications. The improved network model influences in an important way the
time related characteristics and especially the evolution of these characteristics
depending on the number of jobs. However, compared to OptorSim, LCGSim
has not given us more information on replication usefulness and we hope that
a more detailed LCG model will provide us with a better insight on this issue.
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Abstract Network Monitoring is a complex distributed activity: we distinguish agents that
issue requests and use of the results, other that operate the monitoring activity and
produce observations, glued together by other agents that are in charge of routing
requests and results. We illustrate a comprehensive view of a such architecture,
taking into account scalability and security requirements, concentrating on the
definition of the information exchanged between such agents. We address scal-
ability by introducing monitoring sessions activated on demand, with a declared
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communications at every step. A scalable protocol for public key diffusion is
introduced in a companion paper.
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1. Introduction
When we consider the information exchange related to Network Monitoring,

we see that the main actors involved are the producers of monitoring data, and
the consumers. We refine such view by considering consumers as parts of
a complex activity that manages the tasks submitted by users: we call such
distributed activity Workflow Management (here including also the monitoring
activity successive to task allocation) and Workflow Management Agent (also
WMA) the local agents that cooperate in its implementation.

While allocating the resources for user tasks, the interest of such agents is for
snapshots of recent performances as well as for static capabilities of resources;
if a reservation oriented approach is used, resource allocation is carried out
by scheduling resource capabilities, without any need of a monitoring activity.
In contrast, while running a user task, the behavior of the resource must be
permanently monitored, in order to guarantee an appropriate quality of service
and for accounting purposes.

Such considerations narrow our interest to a subset of what is often considered
as Network Monitoring: we exclude the maintenance of pointwise historical
traces, needed to respond to unanticipated requests, and instead we consider
monitoring activity to be dynamically configured according with WMA re-
quests. As a consequence we do not consider the design of a repository for
network observations, while we are only marginally interested to the availabil-
ity of generic aggregated statistics of dynamic behaviors and of static properties
of network elements. Instead, we concentrate on the dynamic configuration of
the monitoring activity, and to the transfer of streams of observations from
producers to WMA.

On the side of the distributed functionality in charge of managing the produc-
tion of Network Monitoring data, we introduce specialized agents (the Network
Monitoring Agents, NMA) in charge of controlling local capabilities. Such
agents are located according with a partitioning of the whole Grid: each par-
tition, a domain in our terminology, is a set of Grid components characterized
by a uniform connectivity with the rest of the system. Such abstraction is often
used in the Internet architecture, so we have opted for an overloaded term to
indicate it. However, it is worth stating that a Network Monitoring domain does
not necessarily correspond to a DNS domain, or to a routing AS or area. Equiv-
alence with such existing entities can be stipulated whenever non contradicting
the principle of uniform connectivity.

The principle of uniform connectivity is used to justify the collection of
aggregate statistics and of static capabilities for network elements between
domains, thus limiting monitoring activity. As anticipated, such information is
mainly directed to task allocation, which should be preferably addressed using



Network Monitoring Session Description 81

anticipate reservation. In such case, the uniform connectivity requirement may
become less stringent.

The rationale behind the introduction of NMAs is the localization of the
capabilities and of the workload related to network monitoring. NMAs act
as proxies for addressing monitoring requests, and manage the streaming of
monitoring data for the whole domain.

Each domain may contain one or more NMAs, which may be responsible
for the observation of distinct Network Elements, or related to distinct admin-
istrations living within the same domain. They are responsible of controlling
Network Monitoring Elements located inside the domain. Network Monitor-
ing Elements (NME) represent resources provided for monitoring the network
using appropriate tools.

Figure 1 summarizes the above architecture in a simple system consisting of
three domains (large ovals labelled with the domain ID), each with a NMA (a
small circle on the border of each oval). Two NMEs are included in domains
“FORTH” and “INFN-CNAF”, while the other domain “INFN-NA” contains a
WMA.

Forth

INFN−CNAF

INFN−NA

WMA

NMA

NMA

NMA

SE+NME

CE

Figure 1. Information flow related to a ping session: the green circle indicates a WMA, black
arrows indicate the flow of a Network Monitoring Session description representing a request,
red circles represent NMAs, black circles represent monitored sites, and red arrows represent
the data stream from the NME to the WMA.

In the design of a NME we remark a relevant distinction between passive
and active techniques, that impacts the scalability of the whole architecture.
Since passive techniques are notably less intrusive than active ones, we prefer
the former, although the latter should be provided as a fallback solution. For
instance, in case of a simple request of connectivity monitoring between two
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sites, the option of a slow ping should be provided in case passive monitoring
is not available. Other scenarios should address passive techniques.

To enforce security, NMEs should accept controls only from local NMAs.
In their turn, NMAs should accept requests only from peer NMAs, as well as
from local WMAs. In that sense domain partitioning improves the flexibility
and expandibility of our network monitoring architecture.

The next section analyzes the activity of the NMA, and describes step by
step the life-cycle of a monitoring request.

2. The operation inside the Network Monitoring Agent
The purpose of a NMA is to coordinate the monitoring of the networking

resources used by the computation coordinated by the WMA. More precisely,
we distinguish four distinct activities:

to accept (proxying) network monitoring requests coming from WMAs
providing the description of the monitoring activity. Such requests may
come either from a WMA inside the same domain, or from another NMA.
In either case the request must be authenticated.

to route the request to another NMA which is able to control an appro-
priate NME;

to coordinate the monitoring activity carried out by NMEs;

to support the streaming of Network Monitoring data to the requesting
WMA, possibly through other NMAs.

In the case of proxying, a WMA that coordinates a given computational
activity will produce a number of Network Monitoring Session Descriptions.
Such data item is exhaustively described in next section.

Concerning the request routing activity, the WMA will forward session de-
scriptions to the local NMA, which will authenticate the request, and forward
it to the appropriate NMA. We do not detail how such request is routed, but
consider that this operation is based on the accessibility of a database contain-
ing Network Monitoring Agents Descriptions. Such data items map NMAs to
domains, define their monitoring capabilities, as well as their connectivity with
other NMAs.

The control of Network Elements requires knowledge of Network Monitoring
capabilities available on NMEs within the local domain.

In order to support the streaming of Network Monitoring results, a data
channel is built between the NMA in charge of coordinating the monitoring
session and the NMA proxying the WMA. In principle such path may traverse
several NMAs, and should consider the possibility of optimizing the path in
case the same information is requested by many different WMA tasks.
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In conclusion, we have identified 3 data structures supporting our Network
Monitoring architecture:

a local directory that supports authentication of requests from WMAs in
the local domain, as well as the description of local NMEs;

a global directory that supports mutual authentication of NMAs;

a network monitoring session description which contains the description
of a single session.

While the design of the local directory does not address any challenging
aspect, the other two have distinct reasons of interest from a research point
of view. The implementation of a global directory implies the solution of a
number of problems concerning distributed processing, while the description
of a monitoring session should flexibly cope with the diversity of network
monitoring requests.

Here we focus on the latter problem, addressing the reader interested in the
former to a specific article [2]: in the next section we introduce the data structure
describing a monitoring session as an instance of an XML Schema Description
document.

3. The XML schema of a Network Monitoring Session
The complex type NetworkMonitoringSessionType (its XSD is in the

appendix) is the frame for a monitoring request, whose attributes are a sort of
header for the Session Description:

SessionId It is a way to identify and refer to a session. Its syntax can be
constrained into a URI-like form using an appropriate pattern, which is
not considered here;

StartAt It is the requested time when to start the monitoring activity;

Duration It is a timeout, in case the Session is not explicitly closed by the
requesting WMA;

BandwidthLimit It is used for negotiation of the multicast facilities, and cor-
responds to an upper bound of the traffic generated by the monitoring
activity, in bytes/second;

Priority Its usage is similar to the above.

Elements are a more composite description of the monitoring activity, which
consists of a sequence of elements with complex types:
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RequestFrom The agents (possibly more than one) that request the activity.
This information is used to generate or extend the multicast tree, as well
as to check privileges;

Route The indication of the route the stream is going to follow, represented as
a tree of NMAs. The case study at page 86 exemplifies its management;

NetworkElement A session monitors a single domain-to-domain path (this is
the meaning associated to a Network Element, more restrictive than in
RFC2216);

MeasurementStream The description of the low level network monitoring
activity. Such data should be passed to the back-end supported tool,
which results in the production of a stream of data of known content and
syntax.

We opt to indicate one single network element in accordance to the fact that
a given session is implemented by a single Network Monitoring Agent. It is
impossible to guarantee such fact if several Network Elements are monitored
within the same session.

Advanced passive network monitoring tools that are able to observe distinct
characteristics of traffic flowing between given endpoints may incorporate such
data into a single stream.

The flexibility of the scheme is based on the definition of the type used to
describe the MeasurementStream, which is where the monitoring tools are
indicated and configured. As a general rule, a single frame in the stream will
contain several numerical values produced (quasi) synchronously by the same
tool activation.

A MeasurementStream element contains one or more elements of type
CharacteristicStream, each containing the description of a tool activity.
Such elements are passed untouched to the NME, each of them corresponding
to a frame series in the stream.

Each CharacteristicStream element includes a choice of elements con-
taining the controls specific for a given network monitoring tool. Note that we
do not consider abstract “characteristics”, for instance roundtrip time, but make
explicit reference to the operational description of their computation. In other
words, a ping is a ping, and not a roundtrip time. The WMA is free to use it as
a roundtrip time, but it cannot confuse it with a roundtrip time measured during
a TCP connect (which is not simply a protocol difference). The use of a trade
mark (e.g. linux-ping) is OK, but in many cases a more abstract reference to
the methodology used to measure it (e.g., ICMP ping) is preferable. The tool
wrapper may accept both a tool specific name or a methodology to indicate
the same operation. The WMA may indicate either a methodology or a tool
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specific name, and the NMA should not interfere with such indication. Descrip-
tive statistics (historical average, stddev etc.) are indicated as tool dependent
options.

Generic elements are the following:

SamplePeriod The granularity of the time axis, in seconds;

SourceIP A specific monitored IP: this details the monitoring below the net-
work element level. Several SourceIP’s may be indicated, if the tool
supports this, but all should be included in the same source domain: it
is the responsibility of the WMA to ensure compliance. The role of the
source in the measurement depends on the specific tool (see SourceDo-
main).

DestinationIP same as above.

Concerning the tool specific element, we outline the example of two external
XSD documents describing a trivial ping, and a passive monitoring session.

The trivial ping (see the XSD in Figure 2) is characterized by the endpoints
and by a ping frequency, already indicated in the CharacteristicStream.
Such data is complemented with the length of the packet. Two distinct charac-
teristics can be requested: the roundtrip time, and the packet loss rate.

A sophisticated passive network monitoring tool (we envision a prototype
based on the MAPI monitoring library [12]) is shown in Figure 3. Based on
the source and destination addresses, and optionally on the protocol name and
the type of a specific application, we can filter and monitor the traffic we are
interested in. The ProtocolName element can be any network protocol at the
transport layer (such as TCP and UDP) while ApplicationName may corre-
spond to any Grid-related application (such as HTTP, GridFTP, and Globus).
The identification of a specific application in the Grid network traffic can be
as simple as looking for a static port number, or more complex based on deep
packet inspection, application-level protocol decoding, or other heuristics. The
measurement frequency is defined using the SamplePeriod element, that is
part of the CharacteristicStreamType.

Other options for the passive monitoring tools include requests for
anonymization of sensitive fields in the results (e.g., IP addresses) and use
of a third host, whenever needed, for gathering and correlating the results.

The interested reader finds in companion papers the description of the tech-
niques used to measure round-trip time [8], packet loss rate [9], available band-
width, and per-application bandwidth usage [1].
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<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pt="http://www.di.unipi.it/~augusto/schema/PingTool.xsd"
targetNamespace="http://www.di.unipi.it/~augusto/schema/PingTool.xsd">

<annotation>
<documentation xml:lang="en">
Network Monitoring Tool Ping.
Copyright CoreGRID. All rights reserved.
Version 0.0
</documentation>

</annotation>

<complexType name="PingOptionsType">
<sequence>
<element name="PacketSize"

type="integer"
minOccurs="0"/>

</sequence>
<attribute name="CharacteristicId"

type="pt:PingCharacteristicIdType"
use="required"/>

</complexType>

<simpleType name="PingCharacteristicIdType">
<restriction base="string">
<enumeration value="RoundTrip"/>
<enumeration value="PacketLoss"/>

</restriction>
</simpleType>

</schema>

Figure 2. Trivial Ping Options

3.1 A case study: monitoring Processor to Storage
connectivity

A simple example illustrates the request of an active monitoring session
between a Storage and a Computing Element to monitor their connectivity
through an ICMP ping (see Figure 4).

The origin of the Network Monitoring Session descriptor is the WMA repre-
sented as a green circle inside the INFN-NA domain (see Figure 1). The WMA
has no hints about the Network Monitoring Architecture, so it delivers a bare
MeasurementStream instance to the local NMA.

At this point the Measurement Stream is encapsulated into a Network Mon-
itoring Session description, and routes the request to the known NMA at one
end of the Network Element. The identifier of the forwarding NMA is placed
in the route stack.

The NMA in the INFN-CNAF domain discovers that it cannot handle the
request: there is no ping wrapper on the Computing element, and therefore
the monitoring activity cannot be carried out. It forwards the NetworkMonitor-
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<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:am="http://www.di.unipi.it/~augusto/schema/MAPIMonitoringTools-0.1.xsd"
targetNamespace=

"http://www.di.unipi.it/~augusto/schema/MAPIMonitoringTools-0.1.xsd">

<annotation>
<documentation xml:lang="en">
Passive Network Monitoring Tools (FORTH).
Copyright CoreGRID. All rights reserved.
Version 0.0
</documentation>

</annotation>

<complexType name="MAPIMonitoringToolsOptionsType">
<sequence>
<element name="ProtocolName"

type="string"
minOccurs="0"/>

<element name="ApplicationName"
type="string"
minOccurs="0"/>

<element name="Anonymize"
type="string"
minOccurs="0"/>

<element name="ThirdParty"
type="string"
minOccurs="0"/>

</sequence>
<attribute name="CharacteristicId"

type="am:MAPIMonitoringToolsCharacteristicIdType"
use="required"/>

</complexType>

<simpleType name="MAPIMonitoringToolsCharacteristicIdType">
<restriction base="string">
<enumeration value="RoundTripTime"/>
<enumeration value="PacketLossRate"/>
<enumeration value="AvailableBandwidth"/>
<enumeration value="UsedBandwidth"/>

</restriction>
</simpleType>

</schema>

Figure 3. MAPI options

ingSession instance to the known NMA on the other Network Element endpoint,
FORTH, pushing its own address on the stack.

The next NMA discovers that the storage element is equipped with a ping
wrapper: therefore it extracts the MeasurementStream description from the
Session description, and delivers it to the NME co-located with the Storage
Element. It also discovers that it is adjacent to the NMA in the INFN-NA
domain, and eliminates the intermediate INFN-CNAF agent from the Route
stack.



88 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

<?xml version="1.0"?>

<nmsd:NetworkMonitoringSession
xmlns:nmsd="http://www.di.unipi.it/~augusto/schema/

NetworkMonitoringSessionDescription-0.5.xsd"
SessionId="456@this.NMagent.ip">
<RequestFrom TaskId="WF245" WorkflowMonitoringAgentId="OurBroker@FORTH"/>
<Schedule StartAt="2007-09-17T12:00:00.000-01:00" Duration="2H"/>
<Route>

<NextAgent Agent="NMAgent@FORTH" Index="1"/>
<NextAgent Agent="Theodolite@CNAF" Index="2"/>

</Route>
<NetworkElement SourceDomain="FORTH" DestinationDomain="CNAF"/>
<MeasurementStream>

<CharacteristicStream CharacteristicStreamId="1">
<SamplePeriod>5</SamplePeriod>
<Path>

<SourceIP>processor_1.ics.forth.gr</SourceIP>
<DestinationIP>ftp.cnaf.infn.it</DestinationIP>

</Path>
<PingOptions CharacteristicId="RoundTrip">

<PacketSize>2048</PacketSize>
</PingOptions>

</CharacteristicStream>
</MeasurementStream>

</nmsd:NetworkMonitoringSession>

Figure 4. XML instance for the example in Figure 1

The NME activates a ping process, formatting the data coming from such
process according to its specifications, and forwarding successive frames to the
local NMA, which in its turn encapsulates the frames by indicating the Session
they belong to and passing them to the next NMA in the stack.

In our case this is the NMA located at INFN-NA, which decapsulates the
data and passes it to the WMA, which is able to unmarshall the data contained
in the datagram according with tool specifications, and process the data.

The WMA finally interrupts the monitoring session notifying the local NMA,
which propagates the request according to the route stack known to it. When the
request reaches FORTH NMA, it stops the monitoring activity on the computing
element. Alternatively, FORTH NMA will perform the same activity when the
“Duration” timeout expires. Intermediate NMA’s will suspend and remove the
registration of the session from their soft state.

4. Related works
The coordination of a network monitoring infrastructure is a matter of active

research. The first effort in this sense is probably the Network Weather Service
[13], which still offers relevant suggestions. However, such prototype indicates
but solves only partially the real challenges of a coordinated network monitoring
architecture: scalability and security.
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Successive studies mainly focussed towards the publication of network mon-
itoring results in view of retrospective analysis: this option limits the application
of such infrastructures to those scenarios where monitoring requests are planned
and concentrate on a restricted subset of routes. Without such limit any solution
is deemed to unscalability, since the number of routes grows with the square of
the number of resource elements in the network.

Such scenario is nonetheless of great practical relevance: administrative
monitoring, as well as accounting or diagnosis fall into the category of a mon-
itoring task that concentrates on few routes, known a priori. To cite some
of the works on this trail, we cite the Globus MDS [11], and EGEE network
performance monitoring architecture [5].

In this paper we explore another facet of the problem, which is relevant to
cope with unplanned monitoring requests. The interest for such aspect of net-
work monitoring is that monitoring requests from the agents responsible for the
coordination of Grid jobs cannot be anticipated, they extend to a limited life-
time, they have a moderate (if any) need of historical data, mainly to improve
measurement robustness. Such aspect of network monitoring is far less stud-
ied, but exhibits a number of challenges: flexibility, since new requests must
be activated dynamically for scalability reasons, and security, since network
monitoring is an expensive activity, and requests must be authenticated.

Our approach to this aspect of network monitoring is marginally related to the
past experience with planned network monitoring. The problems raising in the
two cases are too different to justify a common solution: one for all, unplanned
network monitoring in principle does not need a measurements database, while
planned network monitoring relies on the availability of a powerful repository
for measurements (think for instance to the R-GMA [4] architecture). Therefore
we aimed at a different approach.

The architecture we propose is an evolution of [3] and its design has been
influenced by Internet streaming protocols: the basic requirements are those
announced in [6], but our embrional solution for the request of a Network Mon-
itoring Session is also inspired to the Internet SIP [7] protocol. We also take into
account the RTP [10] protocol as for the components of a network monitoring
request. In analogy to the application profiles introduced in RTP, that charac-
terize the payload in a flexible and expandable way, we opted for a monitoring
tool oriented description, instead of a characteristic oriented approach. Just
like in the case of RTP, the neutrality of an approach that leaves to monitoring
tool designers the freedom to introduce new measurements that do not exactly
match existing characteristics, and to workflow managers designers the ability
to use them, leaves space to research and new products in the rapidly evolving
field of network monitoring tools.
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5. Conclusions
We introduce a distinction between planned and unplanned network moni-

toring activities: we claim that each of them exhibits challenging aspects, and
requires distinct solutions, although the latter is receiving less attention than
the former from the research community.

The fact that unplanned activities are requested by Workflow Management
Agents introduces the need of a scalable and flexible authentication scheme.
Once they are activated their output should not be stored for future use, but
directly delivered to the requester with a lightweight streaming protocol. The
request and reply protocol should be flexible and allow the integration of new
monitoring tools.

In this paper we address a fundamental step in the design of a solution for the
management of unplanned monitoring activity, which consists in the definition
of the information needed to describe a single monitoring session, and the
scope of such entity. In order to give an intuitive framework, we outline the
architecture of the network monitoring infrastructure, identifying the actors and
their inter-play.

APPENDIX – Network Monitoring Session Schema
<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pt="http://www.di.unipi.it/~augusto/schema/PingTool.xsd"
xmlns:am="http://www.di.unipi.it/~augusto/schema/AppmonTool.xsd"
xmlns:nmsd="http://www.di.unipi.it/~augusto/schema/

NetworkMonitoringSessionDescription-0.4.xsd"
targetNamespace="http://www.di.unipi.it/~augusto/schema/

NetworkMonitoringSessionDescription-0.4.xsd"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">

<import namespace="http://www.di.unipi.it/~augusto/schema/PingTool.xsd"/>
<import namespace="http://www.di.unipi.it/~augusto/schema/AppmonTool.xsd"/>

<annotation>
<documentation xml:lang="en">
Network Monitoring Session Description.
Copyright CoreGRID. All rights reserved.
Version 0.1
</documentation>

</annotation>

<element name="NetworkMonitoringSession"
type="nmsd:NetworkMonitoringSessionType"/>

<element name="comment" type="string"/>

<complexType name="NetworkMonitoringSessionType">
<sequence>
<element name="RequestFrom"

type="nmsd:WorkflowMonitoringTaskType"
maxOccurs="unbounded"/>

<element name="Route"
type="nmsd:RouteStackType"
minOccurs="0"/>
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<element name="NetworkElement"
type="nmsd:NetworkElementType"/>

<element name="MeasurementStream"
type="nmsd:MeasurementStreamType"/>

</sequence>
<attribute name="SessionId"

type="string"
use="required"/>

<attribute name="StartAt"
type="dateTime"
use="required"/>

<attribute name="Duration"
type="duration"
use="required"/>

<attribute name="BandwidthLimit"
type="nonNegativeInteger"
default="0"/>

<attribute name="Priority"
type="nonNegativeInteger"
default="0"/>

</complexType>

<complexType name="WorkflowMonitoringTaskType">
<attribute name="TaskId"

type="string"/>
<attribute name="WorkflowMonitoringAgentId"

type="string"/>
</complexType>

<complexType name="RouteStackType">
<sequence>
<element name="NextAgent" minOccurs="0" maxOccurs="unbounded">
<complexType>
<attribute name="Agent"

type="string"/>
<attribute name="Index"

type="nonNegativeInteger"/>
</complexType>
</element>
</sequence>

</complexType>

<complexType name="NetworkElementType">
<attribute name="SourceDomain"

type="string"
use="required"/>

<attribute name="DestinationDomain"
type="string"
use="required"/>

</complexType>

<complexType name="MeasurementStreamType">
<sequence>
<element name="CharacteristicStream"

minOccurs="1" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="SamplePeriod"

type="float"
minOccurs="0"/>

<element name="SourceIP"
type="string"
minOccurs="0"
maxOccurs="unbounded"/>

<element name="DestinationIP"
type="string"
minOccurs="0"
maxOccurs="unbounded"/>
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<choice>
<element name="PingOptions"

type="pt:PingOptionsType"/>
<element name="AppmonOptions"

type="am:AppmonOptionsType"/>
</choice>

</sequence>
<attribute name="CharacteristicStreamId"

type="string"/>
</complexType>

</element>
</sequence>

</complexType>

</schema>
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Abstract Grid Computing promised to present a large number of resources distributed on
a world-area network, ready to be used by a single user: that promise is true.
Now, the problem has moved to the user side, because a normal user normally
knows at most only his organization’s resources, and those numbers of resources
are often not enough for his purposes. Defining a Virtual Organization (VO) as
a set of scientific resources, processors, clusters and Grids which are available
to the user, we study the problem of resource discovery for VOs in a distributed
approach. Viewing a VO-to-VO network as a Peer-to-Peer network, we present
our solution based on the use of contracts to perform the query and assignment,
delegating contracts if the query cannot be fully handled. We first present a
blind scheme of delegation (that is, without knowing of neighbors’ resource
availability), evaluating it by simulations, and showing that it is not necessary
to delegate the query to all neighbors to handle it. Then, a scheme knowing
only direct neighbors which uses the blind scheme is presented. Finally, we will
give recommendations and extensions of our scheme to improve the resource
discovery process.

Keywords: Grid, resource discovery, contracts, delegation.
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1. Introduction
In large multi-cluster grids the resources suffer, most of the time, of low

utilization. If, under some events, the demand exceeds the capacity of a single
system, it is possible to take actions like making the system grow by adding
more resources, or enqueuing the additional demand until the system can serve
it, but none of them seems to be appropriate in the context of Grid Computing.

A better solution lies in making the grids inter-operate in order to drive their
collective demand to achieve a stable utilization of the combined system.

For making grids to inter-operate, some design choices involving resource
selection and performance must be taken. First, a meta-scheduler should be
used to redirect the jobs to the appropriate grid; otherwise, the users would be
forced to submit their jobs directly to the grid system arising new problems
such as to know where are located the suitable resources, or availability of alien
grids.

Considering that a centralized scheduler can be useful in the context of serv-
ing sets of processors, cluster or grids belonging to the same institution (also
known as a Virtual Organization or VO) to perform intra-organization schedul-
ing, to extend this approach to inter-organization scheduling (that is, scheduling
into VO-to-VO networks) could turn easily into a bottleneck, and a decentral-
ized approach is needed.

Completely decentralized solutions exist but they still have not been able to
achieve enough benefits under typical grid workloads. These solutions include
the Koala scheduler [1], the AliEn Resource Brokers [2] and OurGrid [3].

Our work is focused in exploiting structural properties of VO-to-VO networks
(kind of natural networks), to perform inter-VO resource discovery through the
use of contracts and delegation. A contract is used to exchange information
between parties and then it can be used to transform a resource query into a
resource agreement using the same infrastructure. If a VO can handle only part
of the resource request, it will delegate the search for the remaining resources.
Once all the resources are found and claimed by a virtual organization, the
contract could be audited to generate complaints in case of error.

Our solution is partially related with the work of Baraglia et al. [4] which
introduces the concept of Grid Awareness, providing to virtual organizations
useful information such as network topology and QoS through query/response
messages formatted by XML schemes.

This article is organized as follows: Section 2 introduces Contracts for cou-
pling variables, which are used into Section 3 to define delegation schemes for
resource discovery. Section 4 presents the behavior of the scheme in simula-
tions for parameter tunning. Future work is presented in Section 5 followed by
Conclusions in Section 6.
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2. Contracts
Contracts for coupling variables were firstly defined in the work of Leyton

et al. [5]. In a nutshell, a contract corresponds to the interaction between two
interfaces of different parties, providing the means to define how information
between these two parties can be shared (in Figure 1, C is the Contract between A
and B). Coupling variables with contracts is a scheme similar to Condor Match-
making [6], which allows finding suitable matches but specifying only what
information is exchanged. Another related approach to contracts is the Web
Services Agreement (WSAgreement) Specification [7], which specifies that
“an agreement defines a dynamically-established and dynamically-managed
relationship between parties”.

Contracts were studied in the context of coupling generic interfaces between
two parties, and in the work of Leyton et al. contracts were studied specifically
to couple distributed application with Grid deployment descriptors. In this
work, we use contracts in two contexts:

1 To generate a resource query between parties.

2 To generate resource delegation between parties.

In the first case, an application with resource (or set of resources) needs sends
the contract as a resource query to its parties. In the second case, if a Virtual
Organization is only capable to provide a subset of the resources, it delegates
the complement set of resources to its own parties.

A contract is defined as a set of typed clauses. A coupling between two
parties is valid if and only if all clauses on the contract have the same type for
both parties and all of them are valid.

Figure 1. Contracts as an interface between parties

3. Contracts for Resource Discovery
A basic contract for resource discovery has to declare four main clauses:

1 SOURCE = Reference to the VO which owns the resource query.

2 RESOURCE = Name of the resource

3 NUMBER = Number of resources wanted

4 STATUS = {QUERY, ACCEPTED, REJECTED}
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The process of resource discovery begins when a user asks inside of its
virtual organization (VO) for a given resource, if the VO is not able to handle
the resource request, the query is delegated to other VOs. We study the behavior
for two types of delegation: one-to-one and one-to-many (Figure 2).

(a) one-to-one (b) one-to-many

Figure 2. Delegation schemes

3.1 Delegation one-to-one
A contract-query for n resources of type X is sent to another VO, if the

receiver can handle the query, a contract is made between parties. Nevertheless,
if the receiver can only partially handle the request (lets say, it has only m
available resources of type X), it will make a reservation of its m resources for the
contract and it will choose another VO to delegate the query (now requestingn-m
resources). In the example of Figure 2(a) we show that the delegated query of
n-m resources can be handled. Therefore, the original contract <5,QUERY,X,n>
is set up as <5,ACCEPTED,X,m> and a new contract <5,ACCEPTED,X,n-m> is
made between VOs 3 and 5. Note that the contract between VO 3 and VO 5 is
made through VO 2 to inform that reserved resources will be used.

To avoid infinite queries inside the network (for instance, demanding more
resources than the number available in the system), the delegation has a TTL pa-
rameter which is the delegation maximal depth. If after TTL delegations the last
VO is not capable of handle the request, the contract status is set to REJECTED,
and therefore its reserved resources are freed. For simplicity reasons, if a del-
egated contract is rejected, all the contracts belonging to the delegation will be
set to REJECTED and therefore all the reserved resources will be free.

3.2 Delegation one-to-many
A contract-query for n resources of type X is sent to another VO, if the re-

ceiver can handle the query, a contract is made between parties. Nevertheless,
if the receiver can only partially handle the request (lets say, it has only m avail-
able resources of type X, it will reserve its m resources for the contract and it
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will choose other VOs to delegate the query. In Figure 2(b) we show that all
delegated parties are capable to handle their request, therefore the original con-
tract <5,QUERY,X,n> is set up as <5,ACCEPTED,X,m>, and two new contracts
(<5,ACCEPTED,X,a> and <5,ACCEPTED,X,b> having a + b = n − m) are
made between the VO 5 and VOs 1 and 3 through VO 2.

As in the one-to-one scheme, a TTL parameter is set to avoid infinite queries.
Moreover, using the SOURCE clause the scheme refuses multiples request of
resources from the same source, noting that in this scheme is highly probable
of receive two times the same contract-query. Again, if a delegated contract
is rejected, all delegated contracts will be set to REJECTED and therefore all
reserved resources will be freed.

3.3 The next step: sub-contracts
Placing us in the context of VO-to-VO networks, we can exploit structural

properties of this (natural) network storing the resource information of neigh-
bors: sending to neighbors a notification of resource utilization each time a VO
make (or finish) a contract.

Therefore, if a VO (A) asks to another VO (B) for n resources of type X,
B will looks into the neighboring information if all together (not including A)
can handle the request. If true, a contract <X,n> is made between A and B and
contracts <X,ni> (where n =

∑
ni) are made between B and its neighbors

(this process is known as sub-contracting). If no sub-contract can be made, B
delegates the query to its neighbors as we defined above.

Due to the dynamic behavior of the VO-to-VO network in terms of resources
reserved and used, a restrictive verification such as “we can handle the query
if we have at least n resources of type X” could produce a fault of resources
on contract claiming time, generating complaints between A and B (because
finally B was not able to accomplish his contract) and complaints between B
and some of its neighbors. Therefore, a ponderer s > 1 can be used to sub-
contracting only the whole group can handle a request of s×n resources. This
scheme can be used, for instance, if B manages fault-tolerance and A does not,
therefore B asks for more resources than A requested to maintain always a set
of n resources alive.

4. Contracts on a simulated testbed
Considering that a network made of Virtual Organizations has similar struc-

tural properties than a Peer-to-Peer network, we tested our resource discovery
scheme on a VO-to-VO network simulated using PlanetSim [8]. In our sim-
ulation, we interconnected 1, 000 VOs and randomly placed 1, 000 resources
on the network (values were selected considering 1, 000 a medium-size for a
network). Then, we ran our scheme measuring the % of succesful requests;
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that is, given a randomly chosen VO needing n items of a resource, the % of
tries that the VO was capable of find the resources and a delegated contract was
made.

For the one-to-one delegation scheme, we measured the % using as param-
eters:

TTL = 1, 2, 3, 4, 5.

n = 1, 000; 500; 250; 125 and 63.

The results of our experience are shown in Figure 3. As we expected, a use
of TTL=1 produces a poor performance of the scheme, and the performance
increases with TTL. The importance of this result is given by the fact that in
this scheme TTL means also the number of contracts sent between parties (i.e:
number of messages in the network). Therefore, if the resource wanted is
popular and a VO needs only a low number of items, an one-to-one scheme
could be useful.

Figure 3. % of succesful request by total number of resources (N) = 1, 000 for a one-to-one
delegation scheme

For the one-to-many delegation scheme, defining v as the number of neigh-
bors selected to perform the delegation, and m the number of resources to search
in delegation. We evenly distributed the search sending to each neighbor a con-
tract by

⌈
m
v

⌉
resources. Then, we measured the % of succesful requests using

the following parameters:

Defining V as the total number of neighbors for a given VO, we used v =
V ,

⌈
V
2

⌉
,
⌈

V
4

⌉
and

⌈
V
8

⌉
. The idea of dividing the query in a number less

than the total number of neighbors comes from a previous work which
performs efficient load-balancing on Peer-to-Peer networks [9].
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TTL = 1, 2, 3, 4, 5.

n = 1, 000; 500; 250; 125 and 63.

Results are presented in Figure 4, showing that a reduction in the number of
delegated contracts does not produce a great reduction on the performance
of the delegation scheme and, as we expected, the % of succesful queries is
exponential to the search depth.

(a) v = V (b) v =
⌈

V
2

⌉

(c) v =
⌈

V
4

⌉
(d) v =

⌈
V
8

⌉

Figure 4. % of succesful request by total number of resources (N) = 1, 000 for a one-to-many
delegation scheme

5. Future Work
In this work we presented how to use coupling contracts for resource dis-

covery, validating our scheme through simulations using PlanetSim. We plan
to implement our scheme in real systems such as XtreemOS [10] or ProActive
[11] to provide them with a full distributed resource discovery scheme.

On the other hand, we plan to extend our scheme in the use of useful in-
formation for delegation, for instance to use the information of neighbors (as
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sub-contracting) to perform smart delegations. Also, we plan to add to con-
tracts the number of complaints and to perform composition of resources (or
services).

5.1 Complaints: Do you deserve to be part of us?
Some systems as Koala maintain an error counter [1](equivalent to a com-

plaint counter) and, if the number of consecutive errors by an entity reaches a
given threshold, the entity is marked unusable (similar to be removed from the
network). We do not agree with that scheme because we are aligned with the
statement: “let the user decides”. A complaint counter (or complaint-per month
CPM ratio) is a useful information for some testbed and it may be added to the
contract. If a VO needs a reliable resource the obviously step is to add a clause
limiting the CPM ratio. In the other hand, for some experimental testbeds (to
test adaptive algorithms such as fault tolerance or distributed garbage collectors)
will be useful to have unstable networks, that is, with a high CPM ratio.

Note that CPM and the ponderer s are highly related: if a VO wants to looks
like very reliable, a good selection of s has to be performed. In fact, the study
of s is very important to reduce the number of messages traversing the network.

5.2 The following step: Composition
Imagine now that a VO does not have a given resource, but it knows hot to

compose it using other resources. For instance, in Figure 5 VO 1 asks to its
neighbors VO 2 for n resources of type X, and VO 2 does not have the resource
X itself but it knows that resource X can be composed by resources A,B and C.
Moreover, VO 2 knows that its neighbors VO 4, VO 5 and VO 6 have availability
of resources A, B and C respectively. Therefore, contracts between VO 2 and
its parties can be made to acquire the needed resources and the contract status
between VO 1 and VO 2 can be set up as ACCEPTED.

Figure 5. Composition of resources
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6. Conclusions
In this work, our solution to the distributed resource discovery problem was

presented. This solution, called “sub-contracting” is based on the use of con-
tracts to perform the resource query and assignment, delegating contracts if the
query cannot be fully handled.

We first presented a blind scheme of delegation in two flavors: one-to-one
and one-to-many, evaluating them by simulations, and showing that the first
scheme is usefully for popular resources if the requirement is useful for low
number of resources. For the second scheme, we show that it is not necessary
to delegate the query to all neighbors, finding on the 85% of the experiences
all the needed resources for a mid-size set of resources even using 1

4 of the
neighbors to delegate the query.

Following the blind schemes, a scheme knowing only direct neighbors was
presented, discussing the usefulness of a strict delegation due to the dynamic
nature of the network.

Finally, recommendations and extensions of our scheme to improve the re-
source discovery process have been discussed.

Acknowledgments
This work was partially funded by CoreGrid NoE and NIC Labs.

References
[1] H. Mohamed and D. Epema, “Experiences with the KOALA co-allocating scheduler in

multiclusters,” Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International
Symposium on, vol. 2, 2005.

[2] P. Saiz, P. Buncic, and A. J. Peters, “Alien resource brokers,” CoRR, vol. cs.DC/0306068,
2003.

[3] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg, “OurGrid: An Approach to Easily
Assemble Grids with Equitable Resource Sharing,” Proceedings of the 9th Workshop on
Job Scheduling Strategies for Parallel Processing, pp. 61–68, 2003.

[4] R. Baraglia, D. Laforenza, R. Ferrini, N. Tonellotto, D. Adami, S. Giordano, and R. Yay-
hapour, “A study on network resources management,” in Proceedings of the 2nd Inte-
grated Research in Grid Computing Workshop (S. Gorlatch, M. Bubak, and T. Priol,
eds.), (Krakow, Poland), pp. 213–224, CoreGRID, IST, Academic Computer Centre
CYFRONET AGH, October 2006.
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[8] P. Garcı́a, C. Pairot, R. Mondéjar, J. Pujol, H. Tejedor, and R. Rallo, “PlanetSim: A New
Overlay Network Simulation Framework,” Lecture Notes in Computer Science (LNCS),
Software Engineering and Middleware (SEM), vol. 3437, pp. 123–137, 2005.
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Abstract A Grid Resource Broker for a Grid domain, or also known as meta-scheduler,
is a middleware component used for matching works to available Grid resources
from one or more IT organizations. A Grid meta-scheduler usually has its own
interfaces for the functionalities it provides and its own job scheduling objectives.
This situation causes two main problems: the user uniform access to the Grid is
lost, and the scheduling decisions are taken separately while they should be done
in coordination. These problems have been observed in different efforts such
as the HPC-Europa project but they are still open problems. In this paper we
discuss the requirements to achieve a more uniform access to the Grids through
a new approach to global brokering. As the results of these discussions on
brokering requirements, we propose a meta-brokering design, so called meta-
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1. Introduction
In a Grid environment, a resource broker, also called meta-scheduler1, is

usually used to manage user submitted jobs and the scheduling of jobs for exe-
cution to the available Grid resources from one or more IT organizations under
a Grid domain. A Grid meta-scheduler has its own interfaces for the function-
alities it provides and its own job scheduling objectives. However, there is not
yet a standard on the interfaces of Grid meta-scheduler to support the interop-
erability of different meta-scheduling systems that bring us to the original idea
of “The Grid”, which promised an infrastructure to provide a uniform access
to resources across different centers and institutions. This is an important issue
because typically, a large Grid environment can be composed with different
institutions or centers and each center would like to use its own scheduling
system. The current Grid is managed by different meta-schedulers that man-
age a particular institution or virtual organization, and then the Grid becomes
divided into several independent Grids without any interaction between them.
In this context, the different Grid meta-schedulers are working independently,
with different capabilities and using different languages for describing jobs, for
submission, monitoring and so on. Different meta-scheduling projects can be
found in literature, as detailed in Section 2. A meta-scheduling architecture can
be based on different models, from a centralized to a distributed model as it is
discussed in [26]. We also can find various approaches in scheduling policies
such as economics [4], load balancing [25], or based on multi-criteria [16].

To solve the interoperability problem between different meta-scheduling sys-
tems, some initiatives have been developed. The HPC-Europa project is pro-
viding a solution to this problem through the development of a web portal to be
used as a single point of access for different HPC centers in Europe [13]. In this
approach, each center implements a plug-in with its own set of supported capa-
bilities. Next, the user chooses manually the meta-scheduling system to submit
their jobs. Finally, the job scheduling policies are evaluated inside the context of
each center. Using the experience gained from this project, we have concluded
that the portal approach is not enough to provide a transparent single point of
access to Grid environments as the users are still involved with undesirable
complexity and the scheduling results may less optimal. Therefore, we need
to extend the model of HPC-Europa and support the mechanisms and policies
on top of the meta-schedulers; basically, brokering the Grid meta-schedulers.
In addition, the idea of the interoperability between different middleware and
systems was studied in other projects such as in Grid Interoperability Project

1In this paper, we will use resource broker, broker, and meta-scheduler inter-changeably to refer to a grid
resource broker. We will later define meta-broker as a broker on top of brokers, or a meta-meta-scheduler.
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[3]. More specifically, this interoperability project tried to work on mechanisms
to create Grids with a uniform access to both Globus and Unicore systems.

The idea of brokering on top of Grid meta-scheduler has been taken into
account in other works such as in [15]. As a meta-broker, the scheduler on top
of meta-scheduler should be called meta-meta-scheduler. Therefore, a meta-
broker can be defined as the middleware component that selects the most ap-
propriate meta-scheduler to submit a job following a particular policy. This
point of view has influenced the way we are extending the approach in HPC-
Europa as we propose in Section 5. Furthermore, the Open Grid Forum (OGF)
is working on some recommendations regarding interoperability, but the work
is still in working process. Therefore, we will consider the OGF approach only
as a reference for our research activities.

In this paper, we will study the requirements for a meta-brokering system
and we will define a set of requirements for common interfaces that allows
accessing and managing different Grid meta-schedulers in a uniform way and
provides users with single point of access. To achieve these goals we propose
two approaches: (1) designing and implementing a centralized meta-brokering
system on top of the different brokers; and (2) designing and implementing
a distributed meta-brokering system by communicating the different brokers
with a set of protocols and a certain agreement. For the first approach, we
present a design in which we are working on the eNANOS [25] framework as
an extension of HPC-Europa JRA2 activity, and for the second approach, we
present a design based on the LA Grid meta-brokering project [17].

The rest of this paper is organized as follows. In Section 2, we present some
of the current approaches in meta-brokering. In Section 3, we summarize the
work done in the HPC-Europa and the lessons learned in the requirements of
meta-brokering. In Section 4, we discuss the requirements and architectural
elements of ideal meta-brokers for Grid environments. In Section 5, to provide
the meta-brokering functions as described in Section 4, we first describe a design
extension for the HPC-Europa as a centralized model; then we described the
distributed design approach of LA Grid meta-brokering project; and finally we
summarize the models in a table. In Section 6, we present some conclusions
and some roadmap for our future works.

2. Related Work
Several projects regarding Grid meta-scheduling can be found in literature.

Both specific and general-purpose initiatives have been developed during last
years, and some of them are presented as follows. Condor-G [12] is based
on the Condor approach for Grids that combines the inter-domain resource
management protocols of the Globus Toolkit and the intra-domain resource
and job management methods of Condor. AppLes [2] is a project targeted to
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Figure 1. General meta-broker architecture [17]

the application level scheduling. GridBus [18] is an economy-capable Data
Grid service broker for scheduling distributed data oriented applications across
Grid resources. GRMS [10] is an open source meta-scheduling system, which
allows developers to build and deploy resource management systems to large
scale distributed computing infrastructures. The GridWay framework [11] is a
component for meta-scheduling in the Grid Ecosystem intended for end users
and Grid applications developers. The eNANOS project [25] is based on the
idea of having a good low-level support for performing a good high-level HPC
scheduling.

There are some initiatives regarding the interoperability of different meta-
schedulers [3]. The Grid Interoperability Project (GRIP) aim was to realize the
interoperability of Globus and Unicore combining the unique strength of each
system and to work towards standards for interoperability of meta-scheduling in
the OGF. This goal has been achieved in a real testbed and they have extended
for different meta-scheduling systems, as in the HPC-Europa project that is
described in Section 3.

In terms of meta-brokering, an abstract architecture has been proposed in [15]
and the objectives are similar to those discussed in HPC-Europa [13] or in the
interoperability project [3]. The architecture of these proposals is similar. They
are based on a meta-broker model that receives the job submission, and manages
the resource brokers with some data information, as it is shown in Figure 1. In
this paper, we present new designs of meta-brokering that extends the work
done in the Grid community and leverages our experiences from HPC-Europa.

As the Grid standardization organization, the OGF is working on scheduling
architecture in the Grid Scheduling Architecture Research Group (GSA-RG)
[20]. This group has worked on a scheduling hierarchy and the communica-
tion between scheduling instances. Recently the group has started working
on interoperability and on a proposal regarding the interaction between Grid
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schedulers. The OGSA Resource Selection Services Working Group (OGSA-
RSS-WG) [19] will provide protocols and interface definitions for the resource
selection services portion of the Execution Management Services (EMS) part of
the Open Grid Services Architecture. The Resource Selection Services (RSS)
consist of the Candidate Set Generator (CSG) and the Execution Planning Sys-
tem (EPS). The CSG can be used to generate a set of computational resources
that are able to run a job in general, while the EPS uses this list to decide exactly
what resources to run the job.

We take into account the OGF recommendations as a reference. In our
approach, we promote a more practical point of view as we develop a meta-
brokering system in real environments with particular solutions.

3. Lessons learned from the HPC-Europa project
One major activity of HPC-Europa project is to build a portal that provides a

uniform and intuitive user interface to access and use resources from different
centers. As most of the HPC centers have already deployed their own site-
specific HPC and Grid infrastructure; therefore, an important requirement is
to keep the autonomy of HPC centers by allowing them to use their favorite
middleware, local policies, and so on. For instance, there are currently five
different systems that provide a job submission and basic monitoring function-
ality in the HPC-Europa infrastructure: eNANOS [25], GRIA middleware [9],
Grid Resource Management System (GRMS) [10], Job Scheduling Hierarchi-
cally (JOSH) [14], and UNICORE [28]. Additionally, eNANOS, GRMS and
JOSH use the Globus Toolkit to access underlying resources provided for the
HPC-Europa infrastructure.

The Single Point of Access (SPA) effort of HPC-Europa provides two sets
of interfaces to application users. Firstly, a generic interface set that can be
used by all users for most of their batch applications. To this end, this uni-
form interfaces are provided for the most relevant Grid functionality identified
from a requirements analysis of the centers. The key set of functionalities has
been determined to be required for the realization of the SPA: job submission,
job monitoring, resource information, accounting, authorization, and data man-
agement. Secondly, an application-specific set of portlets are being developed
to allow users to manage more complex (e.g., interactive or requiring many
specific input parameters) applications in a straightforward manner.

In order to provide end-users with transparent access to resources, we de-
veloped a mechanism responsible for the management of uniform interfaces
to diverse Grid middleware. Using this mechanism the Single Point of Access
enables dynamic loading of components that provide access to the functionality
of specific Grid middleware through a single uniform interface. These compo-
nents are called plug-ins in this context (see Figure 2). These uniform interfaces
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Figure 2. HPC-Europa architecture with the proposed extensions

are based on standards where possible (e.g., JSDL for job submission [21]) and
functionalities provided by Grid middleware deployed in HPC centers.

From the end-user perspective, a uniform GUI is provided that is common
for all systems deployed in the HPC-Europa infrastructure. This GUI can be
dynamically adapted to particular systems and still keep the same look and feel.
Only slight modifications such as disabling fields and limiting lists of values
are allowed. When a user wants to submit a job, the user is required to choose
the center to which the job has to be submitted and to specify its requirements.
There is no global scheduling and the brokering is done manually by the user.

To this end, we have implemented the ability to check the functionality of
every resource broker system by retrieving the capabilities of site-specific plug-
ins. These descriptions of the implemented capabilities are returned in the form
of the appropriately constrained general XML schema. A plug-in returns two
descriptions: a description of the methods it supports and a description of data
structures (e.g., job description). In [21], this mechanism is described in more
detail using the Job Submission Portlet as an example.

4. Design of Meta-brokering
4.1 Requirements for Meta-brokering

From the experiences in HPC-Europa project we have observed some re-
quirements that should be taken into account when developing a meta-brokering
system:
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1 Global Addressing Mechanism: We need a mechanism to address the
different involved resources. In this case, the main resources of a meta-
brokering system are brokers or their services, not the resources to execute
the job.

2 Common Capability Description Language: Since each broker provides
its own set of functionalities, it is required to have a Capability De-
scription Language (CDL) to describe all the services capabilities (e.g.,
submission, monitoring, accounting, and control).

3 Common Job Description Language: To eliminate the complexity of each
broker having its own job description language, it is required to have a
common language for describing jobs, requirements and so on.

4 Global Job Identifiers: It is very important to have unique mapping of
Grid jobs to different brokers and to the local resources. An implemen-
tation can be done using a single jobID provider for the meta-brokering
system or just using each broker system to argument the job identifica-
tions. In any case jobIDs must be unique.

5 Unified Notifications Mechanism: It is required a common mechanism
or protocol to notify events. The system can receive notifications from
any broker and the notifications should be handled in the same way.

6 Unified Monitoring Mechanism: Since each broker has its own way to
return the monitoring data, including mechanism, data type and schema,
it is necessary to have a common mechanism and schema for monitoring.

7 Unified Accounting Mechanism: Usually the selection of resources is
done using the accounting information especially when economic policies
are applied. For meta-brokering the selection of brokers can be done in
a similar way.

8 Unified Agreement Mechanism: A meta-brokering system needs a mech-
anism to make agreements between brokers. The agreement mechanism
and an API are also required to establish protocols to communicate bro-
kers.

9 Common Scheduling Description Language: We need a Scheduling De-
scription Language (SDL) to describe the scheduling capabilities that a
broker provides (e.g., depending on the user or the users center, a broker
can offer a policy with more or less priority), and global meta-brokering
policies.

In the Grid environments, this is especially important because there are in-
teractions between several components and the different approaches can be
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originated from different contexts. In HPC-Europa, we adopted the standards
proposed by the OGF wherever it was possible. For the requirements listed
above, we propose to use at least the following set of standards: JSDL 1.0 with
some extensions for job description, WS-Agreement for the agreement protocol
between brokers, and WS-Addressing for addressing resources in general.

Other APIs and schemas are yet to be defined to address the remainder
requirements listed above. As an example, some schema such as the one used
in HPC-Europa project and presented in [13] can be used for monitoring.

4.2 The Architecture
To meet the requirements listed in section 4.1, in this paper we propose

two meta-brokering models. On one hand, we consider the centralized model
which is suitable for a limited number of centers and institutions. This is
the model considered in the HPC-Europa extension. On the other hand, we
consider the distributed model for the LA Grid meta-scheduling project, which
is more suitable for more dynamic environments with a higher number of centers
and institutions (i.e., centers can be added to the infrastructure dynamically).
Moreover, the distributed model is more appropriate for more heterogeneous
environments [19] such as the case of the LA Grid, which can be composed of
different kind of resources, from a collection of desktop PCs to supercomputing
centers. These two different models are discussed later sections.

4.3 The Scheduling
In addition to the architecture model and the required interfaces, there is an

important functionality such as the scheduling at the meta-broker level. We
can implement different kind of scheduling policies depending on the kind of
information we have at the meta-brokering level. On one hand, if the meta-
broker has information about the details of the resources, it can implement the
typical scheduling policies studied in the literature, such as in [1] or [4], but
extending them to a larger amount of resources with the lower level brokers
acting as job dispatchers and execution entities. On the other hand, if the meta-
broker does not have any information about the resources and only has certain
information about the brokers, we can implement other kind of policies. One
of the possible meta-brokering policies can be based on the capabilities of the
brokers. In this case, the selection of the appropriate brokering system can
be done using a multi-criteria algorithm that can take into account the brokers
capabilities or even dynamic information, prediction and so on. Another kind
of policies can use accounting information to select the appropriate broker for
a given job in a particular situation. This kind of policies maps directly to the
economic paradigm.
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Furthermore, a meta-brokering scheduling algorithm can be implemented
many approaches. For example, in BSC we are currently working on policies
that use the historical job/resource information to take its scheduling decisions.
We are designing data mining techniques that uses the historical information of
Grid resources usage, Grid workloads, and a minimum set of job requirements
(e.g., executable, number of processors and input files) to estimate variables
about: (1) the job requirements, which estimate how much processor, disk and
memory a job will use; and (2) the future state of the different resources evolved
in the Grid, which estimate, for instance, how much free space will be available
in a given host, or what load it will have in a given future time.

We derive this information by correlating the past executions of similar jobs
using similar resources, or with similar future load using similar prediction
techniques that have been proposed in other works in terms of job performance
prediction [5] [8] [12] [27] and resource usage [7] but using Grid workloads.
In terms of meta-brokering scheduling, we are designing techniques that use
this information for matching jobs to the resources that will better satisfy their
requirements.

In this paper we discuss the importance of the scheduling for a meta-broker
approach. However, we do not present any particular result because we do not
dispose of a testbed or simulation environment for a meta-brokering system yet.

5. Meta-broker designs
In this section, we will provide the detailed designs of the centralized and

distributed models of meta-brokers.

5.1 HPC-Europa Extension Proposal
In this proposal, we extend the solution in the HPC-Europa project by adding

a meta-broker on top of the individual brokers in such a way that the scheduling
decisions are taken depending on the capabilities of the individual brokers.
Thereby, we add a functionality to make the selection of each broker or center
in the meta-broker.

This extension should include new services to perform meta-brokering. As
we have identified in the list of requirements, the HPC-Europa infrastructure
should incorporate a new module for the broker scheduling, a scheduling plugin
for each center, a language to describe the scheduling capability of brokers and
global identifiers management. Moreover, the meta-broker can include some
other services such as a predictor service or a historic data catalog to improve
the scheduling techniques.

The idea is to design a system following the OGF standards such as the JSDL
as a language for describing jobs. In Figure 2, we show the architecture of the
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extended version of the HPC-Europa approach. The extension is distinguishable
by the dark shading.

This meta-broker approach allows the incorporation of more scheduling func-
tionality at the meta-broker level (“SPA” in Figure 2). For example, the meta-
broker can store some useful information to improve the scheduling strategy
(“DATA” in Figure 2). Some of this information can be the previous decisions
regarding the selection of brokers as a historical data such as the achieved qual-
ity of service by the different brokers, the average waiting time, the reputation
of brokers, or the level of availability and reliability of the resources under the
broker domains.

In the new architecture, the meta-brokering scheduling engine is responsible
for the broker selection and where to submit a job. At the portal level, it is
evaluated one of the meta-brokering policies available in the framework and,
associated to this component, a new portlet should be provided to configure
policies and its main issues.

To map the scheduling performed in the meta-broker scheduling engine fol-
lowing the scheduling capabilities of the different brokers, we need a new plugin.
This plugin implements the scheduling API and provides the functionality sup-
ported by each brokering system. Therefore, to define the scheduling capability
of the different center (brokers), we need a scheduling description language.
This language should include the scheduling policy capabilities, such as the
quality of service, priorities, the support for co-allocations and for advanced
reservations, economic issues, or the scheduling policy family. For example, in
eNANOS we can offer as a scheduling capability the load-balancing of parallel
applications in run-time or the support for MPI+OpenMP applications [25].

Finally, to allow the portal managing jobs coming from all the centers, we
need global identifiers mechanisms. To obtain global identifiers, we need a
new service (global identifier manager) that should be accessible from all the
services and through the centers plugins. The global identifier service should
not modify the rest of services; the different brokers should support this new
functionality via the plugins. The Universally Unique Identifier (UUID) [29]
seems to be a good candidate as identifier standard. It is used in software
construction, standardized by the Open Software Foundation (OSF) as part of
the Distributed Computing Environment (DCE). A UUID is essentially a 16-
byte (128-bit) number.

5.2 Meta-brokering design in LA Grid
Latin American Grid initiative (LA Grid, pronounced “lah grid”, [17]) is a

multifaceted international academic and industry partnership designed to pro-
mote research, education and workforce development collaborations with ma-
jor institutions in United States, Mexico, Argentina, Spain, and other locations
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around the world. LA Grid has developed a global living laboratory where in-
ternational researchers are empowered to build new research partnerships and
explore the synergies of their research strengths in areas including transparent
Grid enablement, autonomic resource management, meta-brokering, and job
flow Management. The meta-scheduling project in LA Grid aims to support
Grid applications with resources located and managed in different domains
spanned over a Grid computing cyber infrastructure. This project addresses the
architecture, design, implementation and deployment issues related to meta-
brokering.

The meta-broker design in LA Grid is a distributed model with multiple
meta-broker instances cooperate with each other to provide Grid functions. As
illustrated in Figure 4, one instance of a meta-broker consists of three functional
modules: resource module, scheduling module and job module. Resource mod-
ule is responsible for resource discovery, monitoring and storage. Scheduling
module is responsible for locate suitable resources or brokers for a job re-
quest. Job module is responsible for management of job lifecycle: submission,
dispatching and execution monitoring. A meta-broker instance interacts with
existent brokers within the resource domain.

Figure 3. Meta-broker in LA Grid
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Figure 4. Meta-broker communication model in LA Grid

In LA Grid, resources of different institutions belong to their respective
resource domains and each resource domain has a meta-broker instance (see
Figure 5). Inside a domain, a meta-broker instance controls resources directly
and/or indirectly through other brokers in the domain. In the former case, each
resource reports its information directly to the meta-broker instance using re-
source modules web services. In the latter case, an existent broker is responsible
for reporting the information of the resources under its control. How the broker
collects the resource information is within its own implementation details. In
this way, once an existent broker is able to use web services to report resource
information to a meta-broker instance, different existent brokers can participate
in the LA Grid cyber infrastructure.

Each meta-broker instance collects resource information from its neighbors
and save the information in its resource repository or in-core memory. The
resource information is distributed in the Grid and each meta-broker instance
will have a view of all resources. The resources information is in aggregated
forms to save storage space and communication bandwidth. Example of ag-
gregated resource information on a set of servers in a domain is: type=CPU;
speed={1G,2G}; OS=Win; quantity=3.

As shown in Figure 5, a job request is described in JSDL and can be submitted
to any known meta-broker instance using web services. In general, a job request
is submitted to the meta-broker instance in the same resource domain whose
address is well-known in the domain. When a job request arrives, a meta-broker
instance matches the job to a domain with the appropriate set of resources. The
matching algorithm is influenced by multiple factors. One of the factors is the
location of resources such that the preference will be given to the local domain
at which the job is submitted.



Looking for an Evolution of Grid Scheduling: Meta-Brokering 117

If the matched resources are outside of the domain, the job is dispatched to
the meta-broker instance in another domain. The existent broker or meta-broker
instance that the job is dispatched to has the resources required by the job and
will be responsible to dispatch the job again if necessary. The resource, existent
broker or meta-broker instance that the job is dispatched to will report the job
status back to the original meta-broker instance.

In summary, we define a set of web services provided by meta-broker and
make the incorporation of meta-brokers easy. We store a view of global re-
sources in each meta-broker instance to provide speedy resource matching.
Thus, users can experience short response time. Though storing a view of
global resource locally costs storage space and communication bandwidth, we
apply multiply technologies to reduce the overhead and to keep a similar perfor-
mance with a incomplete view of global resources. Due to the space limitation,
we shall report our efforts in these perspectives in a separate paper.

5.3 Summary of meta-brokering designs
In Figure 5, we summarize the main functionalities and some details for the

discussed approaches: the original HPC-Europa approach, the HPC-Europa
extension, and the LA Grid project.

Figure 5. Summary of the main functionalities of the discussed approaches

6. Conclusions and Future Work
In this paper we have discussed the convenience of the meta-brokering ap-

proach to achieve a single point of access to the Grid and to access to more
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resources. We also have seen how some initiatives have been carried out as
the HPC-Europa project. However, they need to be extended to achieve a real
global scheduling on top of different brokering systems.

One important issue to take into account is the additional overhead added
to the infrastructure with another layer. We can argue that in each layer of the
infrastructure the scheduling and management system is oriented to a particular
target. Moreover, incorporating another layer is acceptable because of the Grid
environment characteristics (e.g., timeouts are longer).

Furthermore, from the experience obtained from the HPC-Europa project,
we have presented the main issues to be taken into account to develop a meta-
broker. We also have proposed to use some standards to implement such an
extension. We have observed a lack of a consensus in the definition of the terms
used in this area (meta-scheduler, broker, meta-broker, and so on). We miss a
formal definition to avoid confusions.

As for the future work we have presented two ways to achieve the meta-
brokering approach. On one hand we have presented a proposal for extending
the solution developed in the HPC-Europa project providing more autonomy
and performance. On the other hand we have presented an overview of the
distributed meta-brokering system being done in LA Grid project. Finally,
we think the main line of future work regarding the meta-brokering research
is toward further investigation for scheduling policies that will allow the new
Grids to become transparent, autonomous and efficient.
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Abstract Computational grids typically involve parallel machines at the sites of the grid.
We apply a grid model where the grid scheduler potentially negotiates schedul-
ing of remote jobs for guaranteed start times with site schedulers that operate
independently and autonomously. Then, response times are a main criterion to
decide where to place a job for remote execution and job placement may in-
volve advanced reservations. The latter are known to have negative impact on
the response times of local jobs. In previous work, we have shown that adaptive
resource allocation and gang scheduling can reduce this impact and therefore
support advanced reservations. However, gang scheduling has the disadvantage
of a high memory pressure. We present an approach for coarse-grain timesharing
with preemption of jobs to disk. The approach is explicitly controllable regarding
the resource shares allocated to different job classes with potential differentiation
for different times of the day. The approach can easily be extended to support ad-
vanced reservation, group shares, and resource provisioning. The differentiation
of service over the day is supported by collection and presentation of detailed
statistics.

Keywords: Parallel job scheduling, preemption, time slices, fair share, advance reservation



122 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

1. Introduction
Computational grids involve remote execution of jobs at other sites and/or

simultaneous execution of jobs across multiple sites. In this paper, we focus on
the former case. We apply a model where the site scheduler remains responsible
for local job scheduling decisions and the grid scheduler submits jobs to the
site schedulers and potentially negotiates start times with them. Thus, remote
execution may or may not involve advanced reservation, i.e. the jobs may be
guaranteed to start at a certain time as negotiated or simply be placed into the job
scheduling queue. Reservations create road blocks in the schedule which may
have negative impact on response times for local jobs as shown in [1] [3] [12]
[14]. In addition, grid scheduling may lead to larger numbers of long-running
jobs being executed which also may harm execution of local medium and short
jobs. We aim at providing better options to deal with the execution of grid jobs
and potential reservations of start times for such jobs without harming response
times of local jobs.

Closely related, user satisfaction in regards to getting their jobs run on parallel
machines is typically anything but good because short and medium jobs often
get poor service. With our approach, we can generally provide better service
to short and medium jobs.

It is necessary to modify job schedulers such that they provide more con-
trollable response times and better service to shorter jobs and such that they
can deal with reservations without harming local jobs. In [15], we have dis-
cussed various dynamic job-scheduling approaches regarding their suitability
for grid scheduling and, in [14], shown that adaptive resource allocation and
gang scheduling can reduce the impact of advanced reservation on the response
times of local jobs. The reason is that the local jobs are given more possibilities
to schedule around the reservations which create road blocks in the schedule.
In this paper, we provide a practically more feasible approach to time-shared
execution.

Gang scheduling creates multiple virtual machines and switches syn-
chronously between different time slices via central control, applied to all
machine nodes or hierarchically organized to subsets of them. This provides
higher probabilities to get short and medium jobs scheduled quickly even in the
presence of wide long-running jobs because having multiple virtual machines
available to place the jobs. Time slices under gang scheduling are in the range
of millisecond or a few seconds. However, gang scheduling increases the mem-
ory pressure because gang scheduling can be efficiently implemented only by
keeping all active jobs in memory, meaning that the jobs from multiple slices
have to share the memory [11] [15]. In addition, no explicit control regarding
backfilling is provided.
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Another option is to preempt jobs to disk by suspension or checkpointing
and support coarse-grain time sharing (switching between jobs in long time
intervals like minutes or hours) [11] or take off jobs in special cases only [5].
However, all existing preemptive approaches lack explicit control of scheduling
options for individual jobs.

We present an approach which employs coarse-grain time sharing with ex-
plicit control, based on suspension of jobs to disk. Since the time slices are
coarse, time slices still permit coordinated scheduling across multiple sites. In
detail, our approach

uses explicitly controlled preemption in certain long-range time slices to
improve response times for short and medium jobs,

applies safe backfilling,

supports varying resource allocation policies over the day,

uses a share-based control without priorities to drive the scheduling of
jobs,

supports advanced reservation for simultaneous scheduling of grid jobs.

We evaluate our approach on the basis of the simulation with large workloads,
derived from the Lublin-Feitelson model, and demonstrate that our approach
improves overall response times and bounded slowdown significantly, therefore
being competitive to gang scheduling without the memory pressure involved in
gang scheduling. We also show that especially short jobs are served very well,
independent of the other jobs in the system. We obtain these results with little
reduction in resource utilization.

2. Related work
Preemption has been investigated earlier and found useful in providing good

utilization and response times, though only if accompanied with migration, i.e.
being able to select new resources when rescheduling the job [9]. Suspension
to swap disk requires continuing the job on the same resources. Migrating
a job is only possible with checkpointing, but checkpointing should be done
at suitable application-specific points in the execution and these may occur
rather infrequently (in the order of hours based on personal communication
with Sharcnet system administrators).

Gang scheduling, which switches between jobs in a coordinated manner via
global time slices, is also a kind of preemption but keeps jobs in memory to
reduce switching costs. Gang scheduling is known to provide better average
response times and bounded slowdowns [8]. Similar benefits as from gang
scheduling were found to be obtainable in [11] [16] via coarse-grain time shar-
ing. The approach in [1] finds benefits if preempting jobs after a maximum of
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1 hour runtime provided that they are over a certain size limit (this approach
ignores preemption cost). This approach is also combined with migration, as-
suming that the application voluntarily quits and saves its state. However, these
approaches do not provide any fair-share considerations. The approach in [5],
however, demonstrates benefits in both average and worst-case slowdowns for
all job classes with suspension only. The approach considers the relative slow-
down of preemptor and preemptees and imposes limits on possible slowdown
and relative sizes between preemptor and preemptees to avoid that long-running
jobs suffer disadvantages.

Job schedulers normally apply backfilling which permits jobs to move ahead
vs. their normal scheduling position to better utilize space. Conservative back-
filling only permits this to happen if no other job in the queue is delayed.
EASY backfilling only guarantees the first job in the waiting queue not to
be delayed. Optimistic/speculative backfilling permits jobs to backfill even
if their estimated runtimes are longer than the available backfill window by
terminating and restarting them later if their actual runtimes conflict with the
reservation times of other jobs [10]. In [13], different heuristics are investigated
for deciding which jobs to preempt if multiple backfilled jobs run beyond the
backfill window. Runtime-used and runtime-remaining were found to be the
best heuristics.

Fair share scheduling was first proposed by Maui [4] though now other
schedulers like LSF have included fair-share ideas, too. Maui maintains shares
per user or group over time and adjusts them by considering the recent past
time intervals and weighing them exponentially. Moreover, Maui pioneered
the idea of combining different factors: political priorities (like group), system
priorities, and user priorities. The combination of factors is then translated
into priorities. The actual scheduling adds a potentially very relaxed EASY
backfilling scheme (if reserving the first job of the queue only). Moab [7]
is a commercial extension of Maui with more differentiated optimization and
priority approaches and also supports of preemption, which can optionally be
applied upon failure to meet fair share targets, upon backfilled jobs running into
reservations, upon expected response times becoming too long, or upon jobs
with higher priority arriving. However, the actual algorithms are not revealed.

3. Preemption and share control
3.1 The basic approach

The basic idea of our approach is coarse-grain time sharing with time slices
in the minute (or potentially hour) range. This permits suspension of jobs to
disk, keeping all memory available for the next running job, and making the
overhead tolerable, while accomplishing similar benefits as gang scheduling.
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The time slices are primarily designated for certain job classes, i.e. each slice
has a specific dominant job type. This permits for example a differentiation into
short-job, medium-job, and long-job time slices. This approach provides a basis
to perform controlled resource allocation for the different job classes.

In addition, we permit definition of certain resources shares (ratios of the
overall resource utilization) to be defined for different job classes in different
time intervals of the day. These shares are mapped to corresponding lengths of
the time slices. Shares express which jobs should run at each time of the day
but also indirectly determine the priority given to a job class. Thus, it makes
sense to allocate higher possible shares to a job class than its average usage is
(as we have done in our experiments for medium jobs). The expected benefits
of our overall approach are

To make sure that short jobs can be scheduled, independent of the cur-
rently running medium and long jobs (i.e., a wide job cannot block a short
job from running) and independent of their own size (i.e. also wide short
jobs, though occurring infrequently, can be served well).

Consequently also to be able to serve medium jobs well in the presence of
wide long-running jobs and being able to control how certain job classes
are served over the day, e.g. to provide less share for long jobs at daytime
and more at night time.

To avoid problems like stranded jobs which may result from preemption
of individual jobs by preempting the whole group of running jobs.

In addition, we have a more explicit handle to control resource allocation
to jobs than using the typical priority approach which keeps the effects hard
to understand and can lead to undesirable cases like a wide long-running job
finally ending up being scheduled during the day.

A potential problem is that the differentiation of job classes into different
time slices leads to fragmentation. However, we permit limited backfilling of
other job classes and merging of slices under certain conditions as described
below.

We also support reservation. If a job is reserved, it starts in a specific time in-
terval and is always scheduled at the beginning of the interval (to make globally
simultaneous scheduling possible) with a certain share.

3.2 Share definition and handling, slice calculation
We split the 24 hours of the day into a number of equidistant time intervals and

permit target ratios for different job classes to be defined for every time interval.
This task may be done by system administrators, based on feedback from job
traces regarding the overall typical job mixes. Site policies may then determine
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how much resource share is allocated to different job classes at different times
of the day.

To keep slice handling manageable, we define slices per each interval, i.e.
we keep fixed boundaries for the slices, see Figure 1. Thus, we may have one
short-job slice, one medium-job time slice, and one long-job time slice per
30 minute interval. We define the slices at the beginning of the time interval,
while deciding the slice lengths for the different job classes on the basis of the
target ratios. However, short jobs are handled separately and get a slice length
according to the longest waiting short job. Thus, short jobs are not preempted
except as a result of being backfilled into a non-short time slice. The remaining
time of the time interval is split according to the ratios defined among the other
job classes. If no jobs of a certain class are available, the share is attributed to
another class for the corresponding interval. If using short, medium, and long
job classes, the ratio defines how the time is split among medium and long jobs.

Accounting considers all used shares from the different job classes per time
interval, with the sum representing the machine utilization for the time interval.
The accounting considers jobs backfilled into a slice that is basically designated
for a different class. In addition, it can happen that in certain time intervals no
jobs of a specific class are available. Thus, we apply an adjustment of share
allocation, based on target shares and past usage, with the latter being considered
for a certain past time window and weights declining exponentially with time
distance. Note that this corresponds to the fair-share idea as introduced by the
Maui job scheduler [4]. We use m different weights, calculated as A∗Bm with
0 < B < 1. B determines how quickly the weights decline and A∗

∑
i=1,m Bi

determines the impact given to the past. Then, the share allocation is adapted to
variations in job submission within the range of the typical job mix. See Figure
2.

For reservation, we implement a simple scheme as proof of concept (more
advanced approaches like reserving a specific share are easily possible). We
split the medium or long share in half to accomodate reservations and schedule
the reserved-job slice as the first slice in the interval.

Figure 1. Share allocation in different intervals during different times of the day. S are short,
M medium, and L long-running jobs.
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// calculate medium share, considering used vs. available shares
diffEShares[M] = 0; diffEShares[L]=0;
for (i in pastSlicesInWindow)

diffEShares[M]+=weights[i] * (share[slot[i]]-usedShares[slot[i]][M]);
diffEShares[L]+=weights[i] * ((1-share[slot[i]])-usedShares[slot[i][L]);

diffEshares[M] /= nPastSlicesInWindow; diffEShares[L] /= nPastSlicesInWindow;

// M got too little, check whether L got too much or other:low load or too much S
if (diffEShares[M] > 0+delta && diffEShares[L] < 0-delta )

targetShare=
min(share[timeInterval]+diffEShares[M],maxShare([timeInterval][M]);

// M got too much
if (accumShareLong > = 0+delta)

targetShare=max(share[timeInterval]-diffEshares[L],minShare[timeInterval][L]);

shortTime = maximumShortRuntime(shortJobs);
if (shortTime > 0)

availSliceTime -= shortTime + switchOverhead;

if (mediumJobs)
{ if (longJobs)

{ mediumTime = targetShare * availSliceTime;
longTime = availSliceTime - mediumTime - 2* switchOverhead; }

else {mediumTime = availSliceTime - switchOverhead;
longTime = 0; }

else (if longJobs)
{mediumTime = 0; longtime = availSliceTime - switchOverhead; }

else { mediumTime = availSliceTime - switchOverhead; longTime = 0; }

Figure 2. Share allocation algorithm.

3.3 Scheduling with controlled backfilling into time slices
At the beginning of each time interval, time slices of the different types

for the corresponding job classes are obtained, according to the description in
Section 3.2. Time slices of different types (designed to a specific job class)
are currently always scheduled in the same order for each time interval, i.e.
from short to long. The initial allocation for each time slice is the set of jobs
that were preempted when the corresponding time slice (of same type) in the
previous time interval ended. This permits jobs to be re-started on the same
resources. Then, the scheduler attempts to allocate jobs of the job class which
corresponds to the slice type from the head of the preemption and waiting
queues. The resource-allocation approach is either first-fit or a smart-node
selection heuristic as described below. Afterwards, the scheduler attempts to
backfill as described below. The scheduling order per job class is FIFO. This is
feasible because we no longer need priorities to give shorter-running jobs better
service.

Our basic backfilling approach is EASY, adjusted to work with different
job classes and our time-slice restrictions. We first try to EASY backfill from
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the same job class. Then we backfill from other job classes, while searching
the other job classes in increasing order of their runtime ranges. The latter
backfilling stage applies the following rules:

1 Any preempted jobs from other slices that can fit onto the free resources
are candidates for backfilling (they are handled before any waiting jobs).

2 Any waiting jobs of other classes can be backfilled if not delaying the
first waiting job of the class that corresponds to the slice type of the job
to be backfilled.

3 Jobs either finish before the end of the slice or run on resources which
are not yet allocated in the slice of their own corresponding type and
therefore can continue running in their own slice.

4 Optionally medium jobs can be backfilled into long slices and kept in
these slices for future intervals.

The abstract code is shown in Figure 3. The smart node-selection heuristic
tries to allocate jobs on resources which are not yet allocated to any job in any
of the slices. This makes it more likely that jobs can backfill. The heuristic
counts the jobs allocated per node and then selects the nodes with the lowest
count. This heuristic is less important for highly loaded systems but can play a
role in cases of only sporadic arrival of certain job types.

By allocating a special slice for reserved job, these get priority over all other
jobs without creating collisions on resources. We provide the options to either
backfill or not with non-reserved jobs.

4. Experimental evaluation
4.1 Experimental setup

We have used the Lublin-Feitelson model [6] for the workload generation.
This model is a complex statistical workload description, considering job sizes,
job runtimes, and job interarrival times. The model includes correlations be-
tween sizes and runtimes, fractions of sequential jobs, fractions of power-of-two
sizes, and differing inter-arrival times according to day/night-cycles. The model
can be adjusted to different machine sizes. For details of the workload parame-
ters, see 1. We have slightly modified the interarrival times and changed the α
parameter from 10.23 to 10.33. This change reduces the average work creation
related to available resources from 91% to 84%. The reasons are explained
below.

Statistics of the workload as obtained with these settings are included in
Table 1. What is interesting to observe from the workload characteristics is that
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// schedule preempted jobs of slice type
// collisions are possible if merging slices
for (all job in preemptionQueue[sliceType])
if (!collision) scheduleJob(job);
else scheduleJob(shortestFinishTimeJob());

// try to schedule waiting jobs
// avoid collisions with preempted jobs if there are any
if (scheduledPreemptedJobs)
{ excludedResources = collectResourcesUsedByScheduledPreemptedJobs();

for (job in waitingQueue[sliceType] )
if (jobSchedulableWithExcludedNodes(job,excludedResources))

scheduleJob(job);
else break;

}
else for (job in waitingQueue[sliceType])

if (jobScheduable(job)
scheduleJob(job);

else break;

tryEasyBackfill (sliceType);

// try restrictive backfilling with other job types
for (queue in preemptionQueue) // sorted by increasing runtime class
for (job in queue)

if (jobFits() && noCollision(job,excludedResources)
scheduleJob(job);

for (queue in waitingQueue) // sorted by increasing runtime class
{ limit = findShortestRemainingRuntime(runningQueue);
for (job in queue)

if (runtime(job) <= limit && jobFits() && noCollisionInOwnSlice(job,jobType)
scheduleJob(job);

}

Figure 3. Core scheduling algorithm.

though the number of short jobs is very high, the work of the short jobs is below
1%. Furthermore, the percentages are consistent for the two workloads tested.

We currently assume that runtime estimates are equal to the actual runtimes
which is no serious restriction for the evaluation, considering that our scheduling
approach does not depend on correct runtime estimates.

For the tests with reservation, we randomly designate a certain percentage
of medium and long jobs as reserved. The reservation time is in the range
[submitT ime + 0.5h, submitT ime + 1h].

We compare our job scheduler (TSL) to standard priority scheduling (Prio).
In both cases, EASY backfilling is applied. We evaluate response times,
bounded slowdowns (response times relative to runtimes with a cut-off for
very short jobs), and utilization. For scheduler parameters, see Table 2.
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Table 1. Workload parameters and workload statistics.

Parameter Value

Machine size 128
Number of jobs in workload 10,000
Nshort 63.7%
Nmedium 19.3%
Nlong 17.0%
Workshort 0.5%
Workmedium 26.5%
Worklong 73.5%

Table 2. Scheduler parameters.

Paramter Value

Interval 30 min
Job classes supported short, medium, long
Classification short jobs runtime < 10 min
Classification medium jobs 10 min sec ≤ runtime < 3 hours
Classification long jobs runtime ≥ 3 hours
Classification narrow jobs size ≤ 10% machine size
Classification medium-size jobs 10% machine size < size ≤ 50% machine size
Classification wide jobs size > 50% machine size
Switch overhead 6 sec
Medium jobs’ daily shares 28% over night, 44% over day
Weights, past window A = 2, B = 0.81, m = 6, window is 24 hours

→ A ∗
∑

i=0,m Bm = 1,
minShare=0.05, maxShare=0.95

4.2 Experimental results
Results for response times and bounded slowdowns are shown in Figure 2

and Figure 3. Average response times improve by 32% vs. priority scheduling
and bounded slowdowns by 87%. This is similar to the results we obtained
in [14]for gang scheduling (27% improvement in response times and 84% in
bounded slowdowns).

The results demonstrate that short jobs are served very well. The average
response time for short jobs is 12 min and the maximum response time is 2h
36min. Response times for medium jobs also decrease significantly but long
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jobs currently suffer, mostly due to wide long jobs. We plan to improve the
scheduling of long jobs by adding additional slices for long-wide jobs in the next
scheduler version. Otherwise, longer response times for long jobs are expected
because long jobs get less machine share over the day. However, these good
results are due to the details of our scheduling approach. If dropping backfilling
with other job types and the smart node allocation, utilization drops to 62% and
the average response times increase to 54h 34 min. Response times for medium
wide jobs increase by a factor of about 10. This is no surprise as we lose many
of the normal fill options.

 

Figure 4. Average response times for the different job classes short, medium, and long and for
the different sizes narrow, medium-size, and wide.

 

Figure 5. Average slowdowns for the different job classes short, medium, and long and for
different sizes narrow, medium, and wide.

Our scheduling approach was capable of maintaining a high utilization:
85.92% with our scheduler vs. 88.96% with priority scheduling, i.e. the re-
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duction in utilization is only 3%. Figure 6 and Figure 7 show that utilization
is consistently high over the whole day and that the share control is effective,
reducing the utilization of different job classes at different times of the day,
while keeping the machine busy.

 

Figure 6. Daily utilization as average over the whole workload execution.

 

Figure 7. Daily slice times as average over whole workload execution

Next, we show results for 5% reservation, see Figure 4. Average response
times are increased by 23% for both medium jobs and long jobs. The utilization
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Figure 8. Average response times for TSL with 5% reservations (TSL R) and for a more
sensitive priority allocation to medium jobs (TSL MH).

was 83.56% which means that the utilization drops by only by about 2%. Thus,
the results are promising.

Finally, we have run the scheduler with a different fine-tuning of the share
control. We now give medium jobs the maximum share if the medium work-
load is high and compare the past usage to the overall averages rather than to
the shares set by the scheduler. The results are shown in Figure 4. We wee
that medium jobs are now served significantly better though at the expense of
increasing response times for long jobs. The utilization is 82.2%, i.e. slightly
decreased by 3.7%. This is not surprising. Generally speaking, our scheduler
involves a trade-off between serving medium jobs well or keeping utilization
high with decent response times for long jobs. The main reason is that since
medium jobs are serviced quickly, fewer medium jobs queue up and therefore
the options for backfilling decrease. Long jobs naturally have little potential
for backfilling among each other.

5. Summary
We have presented an approach which schedules jobs by employing coarse-

grain time slicing and provides explicit control over how much time share
is allocated to different job classes over the day. Time slicing is easier to
handle than individual job preemption if the job allocation situation is complex
(with many jobs that would need to be preempted and very different runtimes).
The approach improves overall average response times and average bounded
slowdowns, to a similar extent as gang scheduling. However, we accomplish this
by mere suspension to disk and without any priority handling and overhead of
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migration and checkpointing. We therefore have a basis to deal with reservations
from grid scheduling equally well as gang scheduling does [13]. Currently
running jobs can be preempted to accommodate grid reservations which may
be allocated in special time slices in combination with our heuristic to avoid node
collisions whenever possible. The approach also provides easy and predictable
control of the allocation of shares to different job classes which may be used in
economic models by extension toward generation of different cost at different
times of the day. The Lublin-Feitelson model used in this paper to evaluate our
approach does not model correlation of job runtimes and sizes to times of the
day and we expect better results with real job traces. In future work, we intend
to improve our approach by special handling of wide long-running jobs and a
combination of time slicing with individual job preemption (for simple cases).
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1. Introduction
The number of computational resources has increased exponentially these

last decades. Scheduling policies have been adapted to these new scenar-
ios where several independent resources have to be managed. Thus, the lo-
cal policies, such as the FCFS, Gang Scheduling or Backfilling policies have
also evolved to more sophisticate approaches for considering issues like multi-
cluster environments, heterogeneous systems or the geographical distribution
of the resources. Several global scheduling solutions have been proposed in the
literature for these environments, such as centralized schedulers, centralized
queues or global controllers.

The backfilling policies have been demonstrated to be the most effective
policies in the local high performance computing centers. Some research works
have extended the traditional backfilling policies for a distributed environments
(see section 2). However one the major problem that they have is that the
runtime of the scheduled applications is supposed to be known, or at least
a closer estimation at submission time and should by provided by the user.
However user in most of the cases will not have enough information (f.e: the
user does not know in which cluster its grid application will run) or enough
skills (f.e: the user just wants to submit its fluid dynamic application without
knowing how many minutes it will take in a given allocation of nodes and cpus)
for specify how long it will his/her job to run.

In this paper we present the Grid Backfilling scheduling policy. It extends the
algorithm for the backfilling traditional policy presented in [16] for distributed
architectures using a prediction service. The main goal of the presented policy
is optimizing the overall performance of the system backfilling the jobs to
the different available computational resources when possible requiring the
minimum information from the user. In this paper we present the usage of data
mining techniques for implement a prediction service that is used by the Grid
Backfilling policy for estimate the job runtime. All the presented algorithms
and techniques have been evaluated using a set of worklogs collected from the
UK National Grid Service.

The rest of the paper is organized as follows: firstly, in the background
section, we provide a discussion for the more relevant proposals concerning
scheduling policies for HPC centers, including the natural evolution for the
scheduling policies from local centers to more global approaches (such as:
multi-site or grid architectures); secondly, we describe the Grid Backfilling
meta-scheduling scheduling policy internals and the data mining techniques
used for predict the run time for the jobs; and finally, we present the policy
evaluation and the conclusions.
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2. Background
In the area of job scheduling strategies for parallel processing the Gang

Scheduling [6] and the backfilling policies have been the main goal of study
these last years. Authors like Feitelson, S-H Chiang or Tsfrir have provided
to the community many quality works regarding this topic. In [16] Skovira et.
al presented the first paper about the EASY algorithm and its performance in
the LoadLeveler system. General descriptions about the most used backfilling
variants and parallel scheduling policies can be found in the report that Dror.
G. Feitelson et al. provides in [7].

In the forthcoming scheduling architectures, like Grids or very heterogeneous
computational resources, prediction techniques are having a crucial relevance
due to user in most of the cases does not have enough information or enough
skills for specify how long the job to run. Tsafrir et al. have presented several
works analyzing the impact of the usage of prediction techniques rather user
estimates in the backfilling policies [19]. They also formalized how the algo-
rithm have to be extended for allow the deployment of this policies in real HPC
centers.

In the current HPC infrastructures, centers may have more than one host
managed by independent schedulers. In theses cases, can occurs that a job
submitted to a Host A could start earlier in Host B of the same center. This
global optimization has been proposed in [21] by Yue. The author proposes to
apply a global backfilling within a set of independent hosts where each them is
managed by an independent scheduler. The core idea of the presented algorithm
is that user submits the jobs to an specific system, with an independent scheduler,
and a global controller tries to find out if the job could be backfilled in another
host of the center. In the case that a job can be backfilled in another host the
controller will migrate the job to the chosen one. The idea is interesting due to
they improve the global throughput of the center and decrease the response time
of the applications. However, the algorithm requires the job runtime estimation
provided by the user and not always he/she is able to provide it. This work it
is only valid in very homogeneous architectures. If a job is finally executed to
a different host from where the user submitted it, both configurations must be
exactly the same. Otherwise, the user runtime estimation loses its validity due
to it may would differ for the new host.

Similar this global backfilling approach, Sabin et al. [8] have presented the
scheduling of parallel jobs in a heterogeneous multi-site environment. They
propose carry out a global scheduling within a set different sites using a global
meta-scheduler where users submit the jobs. Two different resource selection
algorithms are proposed: the jobs are processed in order of arrival to the meta-
scheduler, end each of them is assigned to the site with less instantaneous load;
when the job arrives it is submitted to K different sites (each site schedules
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using a conservative or aggressive backfilling), once the job is started in one
site the rest of submissions are canceled (technique is called multiple requests,
MR). This multi-site approach still does not take into account that when the
local schedulers are scheduling using the backfilling optimization the run times
for the jobs may differ between two different sites.

More centralized approaches have been proposed in the literature. For in-
stance in [5] they analyze the impact of geographical distribution of Grid re-
sources on the machine utilization and the average response time. A centralized
Grid dispatcher that controls all resource allocations is used. The local sched-
ulers are only responsible for starting the jobs after their allocation by the Grid
scheduler. Thus all the jobs are being queued in the dispatcher while the size of
job wait queues of the local centers is zero. A similar approach is the once pre-
sented by Schroeder et al. in [15], where they evaluate a set of task assignment
policies using the same scenario (one central dispatcher).

In [14] Pinchak et al. describe a metaqueue system to manage jobs with
explicit workflow dependencies. Here the placeholder scheduling creates a
user-level metaqueue that interacts with the local schedulers and queues of the
overlay meta computer. In this case, instead of push model, in which jobs are
submitted from the meta queue to the schedulers, placeholder is based on the
pull model in which jobs are dynamically bound to the local queues on demand.

In this paper we present the Grid Backfilling scheduling policy. It extends
the ideas provided by Yue, in its Global Backfilling, and uses the ideas proposed
by Tsfrir about the usage of prediction in backfilling scheduling policies. The
global scheduler has a reservation table with all the computational resources
available on the Grid, and tries to allocate the job to the earliest available
allocation. The processes of finding out the allocation is based on a prediction
of the job runtime. This prediction is done using a technique built on top of
C45 classifying trees, predicts the time that a given job would take to complete
on a given computational node given its statical characterization.

2.1 Data mining and prediction techniques
Data mining can provide to the scheduler estimations that can guide to the

meta-scheduler to carry out a more intelligent scheduling decisions. In the pre-
sented work we have derived this information correlating the past executions of
similar jobs in similar resources or with similar future load using decision trees
for the prediction algorithm. In the literature several prediction methodologies
have been proposed. However, as will be introduced in the later paragraphs, al-
most all of them have been basically focused in predicting the job performance
variables (such as runtime) for local environments or sites. In [10] we have
proposed a set of prediction techniques that provide to the users hints about
where to submit the jobs given a Grid architecture. For example, we estimate
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to the user how much a job will wait in a given broker before get executed with
a specific job requirements (the number of processors, the input files etc.).

Works like those presented by Peter A. Dinda in [3], propose the usage
of linear mathematical models for predicting the runtime for the applications
submitted by the users. Dinda proposes the usage of the time series (AR, MA
ARMA and ARIME) and a windowed mean for carry out host load estimations,
and using such estimation for predict the job runtime. Recently, Yuanyuan
presented in [22] new models, also based in time series, for predict the runtime
for Grid applications. Other works [2] have proposed the usage of a state-
transition model to characterize the resource usage of each program in its past
executions.

In [4] Allen B. Downey characterizes the applications describing the speedup
of the application on a family of curves that are parameterized by a job’s average
parallelism and its variance.

The other statistical approach that is also commonly used is the simulation.
An example is the Dimemas simulator developed in the Barcelona Supercom-
puting Center [13]. The simulator reconstructs the execution trace file by esti-
mating the time to execute each computation burst and communication burst.

Data mining techniques has became very popular during this lasts years.
They are being used in a very wide range of areas, including the job performance
prediction. Warren Smith et al. in [17] presented a first approximation to these
techniques. Their work is mostly based on the work that previously Gibbons
[9] presented before, which consisted in a static clustering of the workloads and
a later usage of the mean and median inside this clusters.

3. The Grid Backfilling policy
As has been introduced in the previous section, in multi-site or Grid archi-

tectures, the local schedulers can optimize the performance (f.e: response time)
for the jobs that are currently queued to the local system or site. However, in
such environments, although they are doing all the best for achieve the highest
performance in the local system or site, the schedule of the whole system might
be improved substantially with a global scheduling. This situation is illustrated
in the figure 1a. It presents two different centers with two different schedulers.
Each scheduler is carrying out a local schedule using a SJF-Backfilling alloca-
tion policy. Although the presented reservation tables are closed to the optimal
in each system, there are several holes that could be filled by allocating jobs
of other centers. This second situation is illustrated in the figure 1b. Jobs are
scheduled using a global backfilling scheduling policy to the different centers
using the meta-scheduler architecture. In this picture can be observed how the
holes have been used for backfilling jobs from other centers, and how the global
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performance for the system (f.e: the throughput) and for the jobs (f.i: the wait
time) have been improved.

(a) Traditional backfilling approach (b) Grid Backfilling approach

Figure 1. Traditional VS Grid Backfilling

We define the Grid Backfilling policy based on four different events: Job ar-
rival, Job starts, Job completion and Job deadline missed. The last event occurs
when a miss-prediction in the runtime of a job occurs. The meta-scheduler is
warned from the local scheduler for update its reservation table according the
new estimated runtime. In the introduction section, we have already introduced
the work that Tsafrir et al. have presented concerning the usage of predictors in
the SJF-Backfilling policy [19]. The approach that we have followed in the de-
sign of the predictor internals, how the scheduler manages the deadline misses
and how the predictor and the scheduler interacts is based on the formalizations
provided in the formers work.

The different elements that are evolved in the architecture are:

The Job α that is submitted to the system is characterized by:

– The static description of the job reqα =
{
∂{1,α}, .., ∂{n,α}

}
where

each propierty is a pair value ∂{i,α} = {JobPropierty, value}.

A set of computational resources {σ1, .., σn} available on the system.
Like the job definition, each resource is descrived by:

– A set of capabilities capσi =
{
∂{1,σi}, .., ∂{n,σi}

}
, where each ca-

pability is composed by a pair key value
∂{i,σi} = {ResCapability, value}
(f.i: ∂{i,σi} = {AvailableProcessors, 256}).
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– The computational resource is composed by a set of nodes
{∂1, .., ∂n}, where each node is composed by a set of processors{
ρ{1,∂}, .., ρ{n,∂}

}

The Prediction Service γ.

The Meta-Scheduler β with its own global reservation table.

In the following subsections we present how the meta-scheduler behaves in
each of the four enumerated events.

3.1 Job Arrival
When a job α with requirements reqα

1 is submitted to the meta-scheduler,
the following scheduling algorithm is carried out:

It pushes the job α to the global wait queue.

It computes all the possible allocations to the current free nodes
outcomesα where the job would be able to run. Note that:

– The outcome is composed by set of nodes {∂1, .., ∂n} of the same
computational resource σi.

– The resource σi satisfies the requirements of the job
∀∂ ∈ capσisat(∂, reqα)

For each of the outcomesα where the job would be able to run:

– It queries to the prediction service the estimation rα of the runtime
for the job α in the computational resource σ of the outcome.

– It stores the estimation and the allocation into a local hash table Ω.

If Ω is not empty, the meta-scheduler will choose the allocation following
the backfilling algorithm allocationα = {∂1, .., ∂n} in Ω that maximizes
the response time for the job. If the job can be backfilled or started (it
would be the first of the wait queue), the job is deleted from the wait
queue and started to run.

If allocationα is not null. It will start the job. (see 3.2)

The priority used in the global queue is the LXWF presented by S.-H. Chiang
in [1]. We have chosen this backfilling derivate due to as has been proved

1For carry out this allocation only static requirements are need from the user: the number of processors, the
executable start and the input/output files. The dynamic requirements, such as the runtime, will be estimated
by the prediction service
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in several works [19] [1] it achieves good performance and the jobs do not
suffer starvation. However, the Shortest-Job-Backfilled-First policy proposed
by Tsfrir in [19] is also a valid candidate for the job selection. The evaluation
results shown that both achieved similar performance.

3.2 Job starts
When a job α is chosen to start to the allocation allocationα = {∂1, .., ∂n}:

The meta-scheduler contacts to the scheduler that manages the resource
specified in the allocation, provides the job credentials with it require-
ments and requires to start the job.

When the job starts to run, it updates the information of the global reser-
vation table.

It contact to the prediction service and provide all the details the job
submission, including the global id assigned to the job. This global id
will be used for match the job information provided by the broker once
the job is finished with its historical data base.

In this study we have considered that the local scheduler accepts the meta-
scheduler resource selection about where the job has to run (nodes {∂1, .., ∂n}).
Thus, the local scheduler only make the resource allocation and has no say
in the matter of how the scheduling is done. However, in future extensions
of this policy would include interactions between all the scheduling layers of
the architecture. For example, the meta-scheduler could contact to the local
schedulers and start a negotiation for the acceptance of the proposed allocation

3.3 Job completion
Once the job has been executed, the scheduler contacts to the meta-scheduler

providing the feedback for the job execution. This feedback includes informa-
tion about variables for the job execution, for instance: run-time, disk used,
memory used, final status etc. When the meta-scheduler receives a job com-
pletion notification:

It will provide this information to the Prediction Service for allow its
future usage by the prediction techniques.

Following the algorithm presented in 3.1 it will try to allocate the head
job of the global queue. If there are enough computational resources the
job will start (3.2).

Following also the same algorithm it will try to backfill (3.2) the jobs
queued in the global queue. The backfilling variance used in the more
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aggressive once, using only one reservation. That means that jobs will
be backfilling only if the start time for the first job of the queue is not
delayed.

3.4 Job deadline missed
In those cases that the prediction service made a wrong prediction under-

estimating the runtime for the job, the local scheduler will notify to the meta-
scheduler that a deadline missed has been reached. In normal backfilling poli-
cies, this job would be killed due to it would interfere with the execution of the
following job. However, using prediction we can not take this approach. In the
model proposed by Tsafrir the estimate runtime for the job is extended an tα
time. This amount of time is computed by the deadline miss managers. We
have tested two times of deadline miss managers:

Gradual Deadline miss manager: extends the job prediction runtime grad-
ually.

Exponential Deadline miss manager: extend the job runtime prediction
in following an exponential distribution.

4. The runtime predictions
We have already emphasized that data mining techniques [13] are especially

interesting because they can be applied to a very different kind of data inde-
pendently of its nature. On the contrary, some statistical algorithms require the
normality of the input variables for assure the correctness of the resulting con-
clusions. Moreover, the most interesting of their characteristics is that some of
them they have an autonomic learning mechanism, and they are able to derive
or discover new knowledge without the necessary interaction of a third part
(user, expert or other software component).

There are several techniques can be used for the performance prediction, for
example Bayessian Networks, C.45 trees, ID3 trees, K-Means or X-Means. In
the presented work we have used C45 trees and discretization techniques for
predicting the job runtimes. In this section we present how we have constructed
and validated the model that has been used later in the grid backfilling evaluation.

4.1 The prediction model
The prediction model is built on top of the C45 decision trees algorithm.

Its goal is to predict the runtime for a submitted application using the static
information provided by the user. The model has been constructed and validated
using the Weka [12] software and following the next steps:

The log file used for generate the model has been preprocessed.
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The continuous variables have been converted to nominal variables.

We have carried out an study for the selection of the response and input
variables for the tree model.

We have constructed of the decision tree validated model.

4.1.1 Log preprocessing. The log contains variables concerning the job
performance (like percentage of processor used or virtual memory used), vari-
ables concerning the job identification (Grid node, job id, job owner and queue),
variables concerning the data that has been used for the job execution (output,
input and error paths and the working directory), and finally, variables concern-
ing the dates of the events for the job (start time, end time, queuing time). For
lack of space we do not provide a detailed analysis about the characteristics of
the NGS workload used in the simulations and workload creation. However we
already carried a deeper study of these traces, a characterization of them can be
found in [10].

Tsafrir presented a very interesting work about detecting and deleting work-
load anomalies in [20]. The authors highlighted a set of phenomena, like
workload flurries, that should be taken into account when analyzing workloads
and proposed a set of techniques for identifying and filtering such anomalies.
Before constructing the model this anomalies have been localized and deleted
in the log.

4.1.2 Continuous variables discretization. We have discretized all the
continuous variables into nominal values. This process has been iterated several
times until find the appropriate bins according to the performance obtained in
the evaluation of the resulting trees. Two different types of configurations have
been tested:

First, varying the number of been in which the continuous variables are
discretized. Initially we tested several number of bins from 3 till 10.
However, the final number of bins has been chose using the findNumBins
option for the unsupervised attribute disctretize filter of the Weka. The
interesting application of this methodology is that can be carried out in
the prediction service without any external supervision.

Secondly, varying the criteria of discretization. The options of desired-
WeightOfInstancesPerInterval, makeBinary and useEqualFrequency for
the unsupervised attribute disctretize filter.

The discretization for the continuous variable run time is shown in the table 1.
The discretization for the rest of continous variables is not shown due to they
were rejected in the construction of the C45 tree.
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Table 1. Run time predictions

Interval Predicted Numerical prediction

(-inf-12390] 12390
(12390-24780] 24780
(24780-37170] 37170
(37170-49560] 49560

(49560-inf) 49560

Table 2. Accuracy by class

TP-Rate FP-Rate Precision Recall F-Measure Class

0.966 0.301 0.92 0.966 0.942 (-inf-12390]
0.359 0.06 0.4 0.359 0.379 (12390-24780]
0.388 0.058 0.324 0.338 0.331 (24780-37170]
0.113 0.001 0.77 0.113 0.194 (37170-49560]
0.388 0.002 0.659 0.335 0.444 (49560-inf)

4.1.3 Selection for the input variables. The set of variables that have
been chosen for built the C45 decision tree have been: executable name, number
of requested processors, user id, group id and the site where the job would be
submitted and the response variable runtime.

Other variables, such as the input files, working directory or output files,
have been ruled out for two main reasons: the sizes of the pruned trees were
big and the non availability of the variables at the submission time. Using the
variables concerning the data used in the job execution resulted in a trees with
a thousands of nodes with a low recall and precisions.

4.1.4 Construction and tree validation. The resulting tree used for pre-
dicting the job runtime has 130 nodes and 120 leaves. The variables that provide
more information (those that are in the upper nodes) are mainly the user cre-
dential and the number of processors used in the job execution. The resulting
model has been tested using the cross validation technique with ten folds. The
resulting model has classified correctly 86% of the instances. The performance
of the constructed model is presented in the detailed accuracy by class presented
in the table 1, and the confusion matrix 3. As can be observed in the results
obtained in the cross validation analysis the model has shown good behaviour.
Moreover, the main errors in the instance classification are only wrong classi-
fication between the classes a, b and c and we exepcted that such kind of errors
should have high impact on the schedule performance.
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Table 3. Confusion matrix

a b c d e Classified as

10354 186 160 7 15 a = (-inf-12390]
482 493 392 0 5 b = (12390-24780]
235 451 352 1 3 c = (24780-37170]
95 93 175 47 7 d = (37170-49560]
91 9 9 6 58 e = (49560-inf)

4.2 The prediction mechanism
The presented C45 tree is providing a prediction for the interval of time that

a given job will need to be completed. However, the algorithm presented in
the proceeding section requires a numerical value for carrying the scheduling.
The prediction service, once the submitted job has been classified in one of
the 5 presented classes, uses the hash 2 for return the numerical value for the
estimation. The upper bound of the estimated class is used due we want to
avoid overestimating the runtime for the job.

5. The evaluation
In the experiments we have simulated four different scenarios: in the first

three scenarios we have simulated independently the workload of each center
using the SJF-Backfilling variant, thus we have evaluated how the different
workload would behave with such policy; the last scenario has consisted on
simulating the Grid Backfilling policy and the workload generated with the
fusion of the four different workloads. The original log traces were collected
form the NGS during five different month. In the NGS the users accessed to
the different computational resources using the Globus infrastructure and they
had to decide in resource their jobs had to be executed. Thereby there were no
global scheduling.

The evaluation of this policy has been tested using the simulation method-
ology. The simulation has used a model that characterizes the computational
resources for NGS architecture (see its characteristics in [10]) including the
centers of Oxford, Manchester, LR and Leeds, and has simulated the Grid
Backfilling policy presented in the previous sections. We have used the Alvio-
simulator that is a C++ event-driven simulator similar to the EASY simulator
implemented by Tsafrir et al. in the paper [18], but modeling the architectures
(the resources and its capabilities) for the centers.

The statistical analysis for the error in the runtime prediction using the pre-
sented prediction scheme (4) in the simulation has shown an average error of
160% and the median error is -1.7%. Our experience in the prediction errors
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Table 4. Performance Variables for each workload and the Grid Backfilling

Center Estimator BSLD SLD WaitTime Backfilled Jobs/Day

Manchester
Mean 1,1 1,9 247 0,3
STDev 1,23 1,4 841 0,12
95th Percentile 1,4 1,8 123 1

Leeds
Mean 2,4 2,5 4266,2 0,37
STDev 3,6 3,8 3150 1,9
95th Percentile 4,3 4,21 19856 2,4

LR
Mean 2,8 3,03 1182 2,3
STDev 23 27,1 4307,3 1,2
95th Percentile 2,3 2322 6223 3

Oxford
Mean 4,04 5,9 6390 1,3
STDev 29 89,2 19420 4
95th Percentile 9,1 10,1 54750 8

GridBackfilling
Mean 1,12 1,17 153,32 3,5
STDev 0,5 0,45 1200,25 5,1
95th Percentile 1,4 1,9 2200.25 14

evaluation has shown this prediction performance values can be used to under-
stand how well the predictor behaves. However, the real benefit of the usage of
a given prediction technique relies on the performance achieved on a specific
scheduling policy. As has been stated in the simulation results the errors that
prediction service had during the simulation were acceptable and demostrated
that the presented architecture can be deployed in real systems.

Table 4 presents the average, standard deviation and 95thPercentile for the
variables Slowdown, Bounded Slowdown, Wait time and Backfilled Jobs per
day for each center independently and for the global architecture with the Grid
Backfilling policy. It is clear that a global scheduling carried out in top of all the
centers improves qualitatively the service provided and reduces substantially the
response time for the submitted jobs. The average wait time of all the centers
has been reduced qualitatively. For instance the Manchester average wait is
almost two times bigger than the average wait time experimented in the Grid
Backfilling. Furthermore, the average wait time of the Oxford center is around
forty times bigger than the Grid Backfilling once. The variable Backfilled
Jobs/Day shows how the global backfilling approach give more chances to the
jobs to start earlier rather than using independent scheduling per centers. The
percentile 95th shows how the ratio of backfilled jobs is at minimum two times
bigger than the once achieved in the independent configurations.
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6. Conclusions and future work
In this paper we have presented the usage of backfilling scheduling tech-

niques in distributed environments using a global reservation table and predic-
tion techniques. We have shown how the analyzed policy provides a uniform
access to the whole computational resources available in the environment and
how it achieves good performance optimizing the usage of all the available re-
sources. The policy has been evaluated using logs collected from the National
Grid Service that contained the jobs that user submitted during four months to
each of the four centers: Oxford, Leeds, Manchester and LR. The average wait
and average wait time for all the jobs submitted to the Grid has been reduced
one order of magnitude respect to the average wait time that the job of the same
workloads had in the original architecture.

The usage of prediction techniques in scheduling policies has been pro-
posed in several works for usage of such prediction rather user estimates in the
scheduling decisions. In this paper we have also presented how data mining
techniques are very suitable for predicting the run time for Grid environments,
and how they can be used in the Grid Backfilling with high success. We have
presented a prediction methodology based on classification trees C45 that hav-
ing as an input static information about the job (executable name and number
of requested processors) predicts the run time for this job in a given site or
center. The predictions have shown only a median of error of -1.7% respect the
original runtime, and a mean of 160%. The real benefit of the usage of a given
prediction technique has been proved on the performance achieved scheduling
policy evaluation. The usage of such techniques is specially important due to
abstarct the user to the underlying complexities of the system, and allows to the
scheduler to decide where to submit jobs having an estimation of how long this
job would run in each of the possible allocations.

Future extensions of this policy will include interactions between all the
scheduling layers of the architecture. In this extension, the meta-scheduler
would reach an agreement with the local schedulers in terms of where the job
can be finally allocated. On the other hand, the current allocation selection
algorithm is focused on optimizing the response time for the submitted applica-
tions and does not take into account other of its requirements. We would like to
take in to account economic criteria’s, soft and hard requirements or resource
matching criteria in the allocation selection.
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Abstract Many types of distributed scientific and commercial applications require the
submission of a large number of independent jobs. One highly successful and
low cost mechanism for acquiring the necessary compute power is the "public-
resource computing" paradigm, which exploits the computational power of pri-
vate computers. Recently decentralized peer-to-peer and super-peer technologies
have been proposed for adaptation in these systems. A super-peer protocol, pro-
posed earlier by this group, is used for the execution of jobs based upon the
volunteer requests of workers, and a super-peer overlay is used to perform two
kinds of matching operations: the assignment of jobs to workers and providing
workers the input data needed for job execution. This paper extends this super-
peer protocol to account for a more dynamic and general scenario, in which: (i)
workers can leave the network at any time; (ii) each job is executed multiple
times, either to obtain better statistical accuracy or to perform parameter sweep
analysis; and, (iii) input data is replicated and distributed to multiple data caches
on-the-fly, in an effort to improve performance in terms of data availability, fault
tolerance and execution time. A simulation study was performed to analyze
the latest iteration of the super-peer protocol and specifically evaluate the new
features.

Keywords: Grid, data caching, job execution, public resource computing, super-peer.
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1. Introduction
Distributed computing has in recent years become the next technological

evolution in the high-performance and consumer computing fields. Grid com-
puting and Peer-to-Peer (P2P) networking are two sets of such technologies
that have partly addressed issues in that area and even though they have evolved
from different communities, it has started to become desirable in the academic
and industrial arenas to explore possible areas of convergence [12]. Super-peer
systems have been proposed [10] [13] to achieve a balance between the inherent
efficiency of centralized networks, and the autonomy, load balancing and fault-
tolerant features offered by P2P networks. In such systems, a "super-peer" node
can act as a centralized resource for a limited number of regular "peer" nodes,
in a fashion similar to a current Grid system. At the same time, super peers can
make interconnections with other super-peers to form a P2P overlay network at
a higher level, thereby enabling distributed computing on much larger scales.

The term "public resource computing" [1] is used for applications in which
jobs are executed by privately-owned and often donated computers that use their
idle CPU time to support a given (normally scientific) computing project. The
pioneer project in this realm is SETI@HOME [3], which has attracted millions
of participants wishing to contribute to the digital processing of radio tele-
scope data in the search for extra-terrestrial intelligence. A number of similar
projects are supported today by the BOINC (Berkeley Open Infrastructure for
Network Computing [2]) software infrastructure. The range of scientific objec-
tives amongst these projects is very different, ranging from Climate@HOME’s
[4], which focuses on long-term climate prediction, to Einstein@HOME’s [7],
aiming at the detection of certain types of gravitational waves.

This paper reports on a super-peer based distributed model, firstly proposed
by this group in [6], that supports applications requiring the distributed execu-
tion of a large number of jobs with similar properties to current public-resource
computing systems like BOINC. Unlike BOINC, the data distribution scheme
outlined here does not heavily rely on any centralized mechanisms for job and
data distribution. To adapt to a P2P environment, the super-peer job submission
protocol requires that job execution is preceded by two matching phases, the
first for job assignment and the second for downloading of input data from data
centers, which are super-peers having data storage facilities.

In the work here, we extend and enhance the data distribution scheme defined
in [6] and refine its analysis to account for a more dynamic and general scenario,
in which: (i) workers can leave the network at any time; (ii) each job is executed
multiple times, either to obtain better statistical accuracy or to perform parame-
ter sweep analysis; and, (iii) input data is replicated and distributed to multiple
data centers on-the-fly, in an effort to improve protocol performance in terms
of data availability, fault tolerance and execution time. To demonstrate these
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concepts, a set of simulation runs have been performed to evaluate the impact
of the replication and caching mechanisms on performance indices, specifically
regarding the overall time needed to execute the chosen jobs and the average
utilization of data centers.

The remainder of the paper is organized as follows. Section 2 discusses
related work in the field and shows how the proposed architecture here goes
beyond currently supported models. Section 3 presents the super-peer model
and the related protocol. Performance is analyzed in Section 4, and conclusions
and future work are discussed in Section 5.

2. Related Work
Desktop Grids, in the form of volunteer computing systems, have become

extremely popular as a means to garnish many resources for a low cost in
terms of both hardware and manpower. The most popular volunteer computing
platform currently available, the BOINC infrastructure [2] is composed of a
scheduling server and a number of clients installed on users’ machines. The
client software periodically contacts the scheduling server to report its hardware
and availability, and then receives a given set of instructions for downloading
and executing a job. After a client completes the given task, it then uploads
resulting output files to the scheduling server and requests more work.

The BOINC middleware is especially well suited for CPU-intensive applica-
tions but is somewhat inappropriate for data-intensive tasks due to its centralized
nature that currently requires all data to be served by a set group of centrally
maintained servers. BOINC allows a project to configure a fixed and static
set of data servers that are maintained for a particular project and made avail-
able for data distribution. Although this scheme enables a number of servers
to help load balance the network and scales well for the current applications
utilizing BOINC, the topology is static and has a number of problems scal-
ing if more data-intensive applications are introduced. For example, under the
current system, an administrator must dedicate time to configure and maintain
these data serving machines, which are generally independent for each BOINC
project. Such machines are costly to purchase and maintain, additionally they
are centrally administered; therefore cannot generally be used by other BOINC
projects. The real cost, however, generally lies with the expenditure required to
maintain the needed network bandwidth to support a project, especially given
the extremely large scale of some public resource computing projects.

Peer-to-Peer (P2P) data sharing networks have proven to be effective in
distributing both small and large files across public computing platforms in a
relatively efficient manner that utilizes both participants’ upload and download
bandwidth. Popular super-peer based networks among these system are the
Napster [11] and Kazaa projects [9]. Recently, BitTorrent [5] has become
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the most widely used and accepted protocol for P2P data distribution, relying
on a centralized tracking mechanism to monitor and coordinate file sharing.
Although this approach has proved quite scalable and efficient, it might not be
appropriate to scientific volunteer computing platforms due to its "tit for tat"
requirement that necessitates a ratio between upload and download bandwidth,
thus requiring peers to share data if they are recipients of it on the network. Such
stringent requirements are likely to prove problematic for volunteer computing
platforms. For example, there are security implications of opening additional
ports for traffic since every client in the network becomes a server. Further, it is
difficult to establish trust for data providers in the network; that is, it is difficult
to stop people acting as rogue providers and serve false data across the network
or disrupt the network in some way.

The approach proposed in [6], and enhanced in this paper, attempts to com-
bine the strengths of both a volunteer distributed computing approach like
BOINC with decentralized, yet secure and customizable, P2P data sharing
practices. It differs from the centralized BOINC architecture, in that it seeks to
integrate P2P networking directly into the system, employing a job manager that
sends data to a P2P network instead of directly to the client. Once data enters the
P2P network, it is automatically propagated across the data nodes as required
through simple caching schemes. Such a system helps to distribute data load
dynamically in a decentralized fashion, both in topology and administratively,
making it far more suitable to the Grid domain than static centralized systems.
For example, inherent in BOINC-style networks is the requirement to send a
needed data file to several workers multiple times to provide reliability and
fault-tolerance. This replication imposes an extra and unneeded expenditure
of server bandwidth, which can be avoided through a P2P caching mechanism
that replicates the data across the network when it is first transferred. By repli-
cating the data in such a way, there is an immediate decrease on the required
central server bandwidth and also more advanced data distribution mechanisms
can be supported, such as placing the data in locations where it is most needed
on the network. Further, a number of projects require many nodes to process
the same data, with different parameters, a situation that can also exploit the
overlay described here. A gravitational-wave scenario presented in this paper
is an example of such an algorithm.

3. A Super-Peer Protocol for Job Submission
A data-intensive Grid application can require the distributed execution of a

large number of jobs with the goal to analyze a set of data files. One represen-
tative application scenario defined for the GridOneD project [8] shows how one
might conduct a massively distributed search for gravitational waveforms pro-
duced by orbiting neutron stars. In this scenario, a data file of about 7.2 MB of
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data is produced every 15 minutes and it must be compared with a large number
of templates (between 5,000 and 10,000) by performing fast correlation. It is
estimated that such computations take approximately 500 seconds. Data can
be analyzed in parallel by a number of Grid nodes to speed up computation and
keep the pace with data production. A single job consists of the comparison of
the input data file with a number of templates, and in general it must be executed
multiple times in order to assure a given statistical accuracy.

This kind of application is usually managed through a centralized framework,
in which one server assigns jobs to workers, sends them input data, and then
collects results; however this approach clearly limits scalability. Conversely,
we propose a decentralized protocol that exploits the presence of super-peer
overlays, which are more and more widely adopted to deploy interconnections
among nodes of distributed systems and specifically of Grids.

The super-peer protocol relies on the definitions of different roles that can
be assumed by Grid nodes (i.e., by super-peers or by simple nodes), as detailed
in the following:

the data sources are nodes that receive data from an external sensor, for
example a gravitational wave detector in the GridOneD scenario, and
provide this data to nodes for the execution of jobs. Each data file is
associated to a data advert, i.e. a metadata document which describes
the characteristics of this file.

a job manager produces job adverts, i.e., files that describe the charac-
teristics of the jobs that must be executed, and is also responsible for the
collection of output results.

the workers are Grid nodes that are available for job execution. A worker
first issues a job query to obtain a job to be executed and then a data query
to retrieve the input data file. A worker can disconnect at any time; if this
occurs during the execution of a job, that one will not be completed.

the super-peers constitute the backbone of the super-peer overlay. Super-
peers are connected to workers through a centralized topology and to each
other through a high level P2P network. In the proposed protocol, super-
peers play the role of rendezvous nodes, since they compare job and
data description documents (job and data adverts) with queries issued to
discover these documents, thereby acting as a meeting place for job or
data providers and consumers.

data cachers are super-peers which have the additional ability to cache
data (and associated data adverts) retrieved from a data source, and can
directly provide such data to workers. Super peers and data cachers can be
distributed on separate nodes if desired but in this experiment we hosted
the data cachers on super peers for simplicity.
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In the following, data sources and data cachers are collectively referred to
as data centers, since both are able to provide data to workers, although at
different phases of the process: data sources from the very beginning, data
cachers after retrieving data from data sources or other data cachers. Notice
that the distinction between data sources and data cachers has been introduced
in this work, since here evaluation focuses on dynamic caching mechanisms.
Conversely, in [6] it was assumed that all data centers possess the data files
before starting the job submission process: in other words the replication and
caching phase was separated from the job submission phase.

We assumed that only super-peers can assume the role of data centers, but
the protocol can be easily extended to the case in which even simple peers can
cache and provide data. We envisage that the same user-driven process is used
to configure a peer; that is, each user can decide if a node will be a super peer
and/or data center, as well as a worker. In the BOINC scenario, the existing
dedicated machines would form the obvious data-center backbone and other
peers (with high storage and network capacity) would also make themselves
available in this mode.

3.1 Job Assignment and Data Download
Figure 1 depicts the sequence of messages exchanged among workers, super-

peers and data centers for the execution of the job submission protocol in a
sample topology with 5 super-peers, of which one is a data source and two
others are data cachers. This example describes the behavior of the protocol
when a job query is issued by the worker WA. In this case dynamic caching is
not exploited because: (i) input data is only available on the data source DS0,
i.e., no data cachers have yet downloaded data; (ii) data cannot be stored by the
super-peer connected to WA, since this is not a data cacher. The behavior of
the protocol with dynamic caching is explained later.

The protocol requires that job execution is preceded by two matching phases:
the job-assignment phase and the data-download phase. In the job-assignment
phase the job manager(the node JM in the figure) generates a number of job
adverts, which are XML documents describing the properties of the jobs to be
executed (job parameters, characteristics of the platforms on which they must
be executed, information about required input data files, etc.), and sends them to
the local rendezvous super-peer, which stores the adverts. This corresponds to
step 1 in the figure. Each worker, when ready to offer a fraction of its CPU time
(in this case, worker WA), sends a job query that travels the Grid through the
super-peer interconnections (step 2), until the message time-to-live parameter
is decremented to 0 or the job query finds a matching job advert. A job query is
expressed by an XML document and typically contains hardware and software
features of the requesting node as well as CPU time and memory amount that the
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node offers. A job query matches a job advert when the job query parameters
are compatible with the information contained in the job advert. Whenever the
job query gets to a rendezvous super-peer that maintains a matching job advert,
such a rendezvous assigns the related job to the requesting worker by directly
sending it a job assignment message (step 3).

Figure 1. Super-peer job submission protocol: sample network topology and sequence of
exchanged messages to execute one job at the worker WA. Dynamic caching is not used because
it is assumed that data cachers have no yet stored data.

In the data-download phase, the worker that has been assigned a job inspects
the job advert, which contains information about the job and the required input
data file, e.g., size and type of data. In a similar fashion to the job assignment
phase, the worker sends a data query message (step 4), which travels the super-
peer network searching for a matching input data file stored by a data center.
Since the same file can be maintained by different data centers, a data center
that successfully matches a data query does not send data directly to the worker,
in order to avoid multiple transmissions of the same file. Conversely, the data
center (in this example the data source DS0) sends only a small data advert
to the worker (step 5). The worker chooses a data center, and initiates the
download operation (steps 6 and 7). After receiving the input data, the worker
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executes the job, reports the results to the job manager (step 8) and possibly
issues another job query.

It can be noticed that in the job assignment phase the protocol works in a way
similar to the BOINC software, except that job queries are not sent directly to
the job manager, as in BOINC, but travel the super-peer network hop by hop.
Conversely, the data download phase differs from BOINC in that it exploits the
presence of multiple data centers in order to replicate input data files across the
network.

3.2 Dynamic Caching
Dynamic caching allows for the replication of input data files on multiple

data cachers. This leads to well known advantages such as increased degree
of data availability and improved fault tolerance. Moreover, dynamic caching
allows for a significant saving of time in the data download phase, because data
queries have a greater chance to find an available data center, and most workers
can download data from a neighbor data cacher instead of a remote data source.
The remaining part of this section illustrates the dynamic caching mechanism,
while the performance evaluation is discussed in Section 4.

Figure 2. Download phase of the super-peer job submission protocol, with dynamic caching.
After the request of worker WB , the data cacher DC2 retrieves the data file from the data source
DS0, replicates and caches the file, and delivers it to WB . Subsequently, the request of worker
WC is directly server by the data cacher DC2.



Cache-Enabled Super-Peer Overlays for Multiple Job Submission on Grids 163

Figure 2 shows how the protocol handles dynamic caching, both in the repli-
cation phase (which occurs when data is downloaded from a data source and
stored by a data cacher) and in the retrieval phase (which occurs when data
is retrieved from a data cacher by a worker). These two mechanisms are de-
scribed in Figure 2 by displaying the messages exchanged when two workers
WB and WC , connected to the same data cacher DC2, issue two job queries
at different times, first WB then WC . For simplicity, only messages related to
the download phase are shown, and they are distinguished by subscripts A and
B, corresponding to the two workers. The data query issued by WB finds a
matching in the data source DS0. As opposed to the case described in Figure
1, this time the super-peer connected to WB is a data cacher, DC2. To let this
data cacher store the data file, the data advert is not sent directly to the worker
WB , but first to DC2 and then from DC2 to the worker. Analogously, the data
file is downloaded by DC2, which replicates and caches it, and then passes it
to the worker. Subsequently, DC2 will act like a data source for the period of
time in which it maintains the data file in its cache. In this example, the data
query issued by WC will be served directly by the cacher DC2 instead of the
data source DS0.

To increase performance, a file splitting approach is adopted: data files are
not downloaded as a whole but split in ordered fragments (of 1 Mbytes size in
our case). For example, if the data cacher DC2 when receiving a data query
does not hold the entire data file but has already received a part of it from DS0,
it will not forward the data query, because it will soon receive the remaining
fragments from DS0. As soon as it receives these fragments, DC2 will pass
them to the requesting worker.

A further improvement could be obtained by enabling the parallel download
of data segments from two or more data centers. The benefits and drawbacks
of this enhancement are currently under investigation.

4. Performance Evaluation
A simulation analysis was performed by means of an ad hoc event-based

simulator, written in C++, to evaluate the performance of the cache-enabled
super-peer protocol.

The simulation scenario is described in Table 1. The parameters of the
representative astronomy scenario mentioned in Section 3 are used for the test
case (file size, job execution time, etc.). It is assumed that all the jobs have
similar characteristics and can be executed by any worker.

Workers can disconnect and reconnect to the network at any time. This
implies that a job execution fails upon the disconnection of the corresponding
worker. This is a new feature with respect to the basic protocol presented in
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Table 1. Simulation scenario.

Scenariofeature Value

Number of super-peers, Nspeer 25 to 100
Maximum number of neighbors for a super-peer 4
Average number of workers connected to a super-peer 10
Average connection time of workers 4 h
Average disconnection time of workers 1 h
Number of data centers (data sources + data cachers) about 50% of Nspeer

Size of input data files 7.2 Mbytes
Latency between two adjacent super-peers
(or between two remote peers in a direct connection) 100 ms
Latency between a super-peer and a local worker 10 ms
Bandwidth between two adjacent super-peers
(or between two remote peers in a direct connection) 1 Mbps
Bandwidth between a super-peer and a local worker 10 Mbps
Mean job execution time 500 s
Number of jobs, Njob 50 to 500
Number of executions requested for each job, Nexec 10
Matches to live, MTL 10 to 30

[6]. Table 1 specifies the assumed average connection and disconnection times
of workers.

To achieve multiple execution of every single job (which can be useful to
enhance statistical accuracy or perform parameter sweep analysis) two parame-
ters have been added: Nexec and MTL. Specifically, each job must be executed
at least a given number of times, Nexec, which is set to 10. To guarantee this,
a strategy based on redundant job assignment is exploited: each job advert
can be matched and assigned to workers up to a number of times equal to the
parameter MTL, or Matches To Live, which must be not lower than Nexec. A
proper choice of MTL can compensate for possible disconnections of workers
and consequent job failures.

It is assumed that local connections (i.e. between a super-peer and a local
simple node) have a larger bandwidth and a shorter latency than remote con-
nections. To compute the download time with a proper accuracy, a data file is
split in 1 MB segments, and for each segment the download time is calculated
assuming that the downstream bandwidth available at a data center is equally
shared among all the download connections that are simultaneous active from
this data center to different workers.

Simulations have been performed to analyze the overall execution time, i.e.
the time needed to execute all the jobs at least Nexec times. The overall execution
time, Texec, is crucial to determine the rate at which data files can be retrieved
from the data source in order to guarantee that the workers are able to keep
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the pace with data. We also computed the average utilization index of data
centers, U , which is defined as the fraction of time that a data center is actually
utilized, i.e., the fraction of time in which at least one download connection,
from a worker or a data cacher, is active with this data center. The value of U
is averaged on all the data centers and can be seen as an efficiency index.

4.1 Redundant Submission of Jobs
A first set of simulation was performed for a network with 25 super-peers,

1 data source and 12 data cachers. The purpose was to investigate the possible
benefits of the redundant submission of jobs, in other words the impact of the
Matches To Live (MTL) parameter on performance indices. Values of MTL
were set to values ranging from 10 to 30, while Nexec was fixed to 10.

Figure 3 shows that the overall execution time increases with the number
of jobs Njob and, more interestingly, tends to decrease as the value of MTL
increases. The reason of the latter phenomenon is that a larger MTL allows to
better compensate for the possible failure of jobs due to peer disconnections.
However, this effect is not more evident when the MTL exceeds a threshold,
in fact the execution time becomes approximately constant. Actually very
large values of MTL are not even exploited since the job assignment phase
is terminated as soon as the Job Manager receives, for each job, the results
related to Nexec executions. Finally, notice that results related to MTL=10, and
MTL=12 for Njob equal to 500, are not reported because with no or low degree
of redundancy it was proved not possible to complete all the required jobs.
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Figure 3. Overall execution time vs. the value of MTL, for different numbers of jobs.

Figure 4 shows that the average utilization of data centers, and hence the
efficiency of the protocol, increases with the amount of computation assigned
to workers, i.e., both with the number of jobs and with the MTL value. To
understand this, it must be considered that data cachers are not very utilized
in the first phase of the process, because they have not yet retrieved data from
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data sources, whereas they are fully exploited only after they have retrieved
such data. Therefore, the utilization of data centers is high only when the
number of required job executions is large enough to make the caching of data
convenient. On the other hand, when the amount of computation is low, the time
interval required by data cachers to retrieve data files is relevant with respect to
the overall execution time, therefore data cachers are not exploited for a large
fraction of time, which explains the low values of the utilization index.
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Figure 4. Average utilization of data centers vs. the value of MTL, for different numbers of
jobs.

4.2 Scalability Analysis
An additional set of simulations were performed to evaluate the behavior of

the protocol in variable-sized networks. The number of super-peers was set
to 25, 50, and 100, which corresponds to about 250, 500 and 1000 workers.
The number of data centers was set to about half the number of super-peers,
specifically to 13, 25 and 50, respectively. Two different scenarios were tested:
when only one data source is available, regardless of the network size; and when
the number of data sources is proportional to the network size. In this second
case, we increase the number of data sources linearly with the increased network
size by doubling the data sources at each stage i.e. 1, 2 and 4, respectively. This
essentially compares how our approach affects a BOINC network if the BOINC
administrator provides more data servers or data sources into the network. The
number of jobs Njob was set to 250, for both scenarios.

Results are reported in Figures 5 and 6. It is interesting to note that the overall
execution time may be decreased by using a larger number of workers. However,
in the analyzed scenarios, this improvement is only noticed when the number of
super-peers is increased from 25 to 50, while the use of larger networks is not
beneficial. Furthermore, it can be noticed that the reduction of the execution
time is obtained only if the MTL is larger than a threshold. Indeed, if MTL is
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low, it is likely that a considerable percentage of jobs are assigned to workers
that are distant from the data source(s); the larger is the network, the longer are
download times, and therefore the overall execution time. Conversely, with a
large MTL, it is more probable that the at least Nexec jobs are assigned to workers
directly connected to data centers, which assures lower download times; in this
case, a larger number of workers actually decreases the overall execution time,
because more jobs can be executed in parallel.
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Figure 5. Overall execution time vs. the MTL value, for different network sizes: 25, 50 and
100 super-peers. Results are obtained with 1 data source.
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Figure 6. Overall execution time vs. the MTL value, for different network sizes: 25, 50 and
100 super-peers. Results are obtained with a number of data sources proportional to the network
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Moreover, the comparison of Figures 5 and 6 shows that the execution time
decreases if the number of data sources is increased from 1 to a number propor-
tional to the network size, but again this only occurs with low values of MTL
nad for large networks (num. of workers >= 500). With large values of MTL,
the execution time hardly depends on the number of data sources: one data
source suffices to propagate data files to data cachers and to workers.
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5. Conclusions
In this paper we have reported on the ongoing work and results of our research

into a decentralized architecture for data-intensive scientific computing. This
research has been undertaken according to the "public-resource computing"
paradigm, where resources are distributed and generally donated by network
volunteers. To take full advantage of the full spectrum of client-side capabilities
in these types of networks, where participants generally have not only idle CPU
cycles, but also substantial network bandwidth, we have presented a super-
peer data distribution scheme that attempts to leverage the available resource
capabilities for the submission of a very large number of jobs. In the scenario
presented here, a small group of nodes maintains and advertises job description
files and a large number of dispersed worker nodes execute the required tasks.
Job assignment is performed by this group of rendezvous peers, which form a
super-peer overlay network and match job descriptions with job queries when
they are issued by available worker nodes.

To provide support for this scheme, a number of simulations have been per-
formed to evaluate the impact of application (the number of jobs and the number
of times that each of them is assigned to workers for statistical analysis) and
network parameters (the number of workers and data centers) on performance
indices such as the overall time to execute a given set of jobs and the utilization
of data centers. Results for the test-case we identified show that the availability
of several data centers and the use of dynamic caching bring benefits to ap-
plications. During this process, we have also observed that there is a balance
between a larger number of data servers and the effective utilization of a single
data center. Given the network and data parameters, the optimal number of
data centers for a given problem space can be identified, thereby helping max-
imize the return of investment related to the deployment of new data centers.
By using a system described in this paper, BOINC-like applications are able to
replicate their current static data server functionality through a dynamic and de-
centralized data distribution system that enables projects to automatically scale
their data needs without additional administrative overhead as their user-base
or problem size increases.

Future work in this area will investigate a number of interesting research av-
enues, such as: (i) the evaluation of the pros and cons of parallel downloading of
data segments from two or more data centers; and, (ii) the performance evalua-
tion of using a super-peer schema for scenarios where input data is progressively
being fed into the network from an external source as a data stream.
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1. Introduction
Storage systems have become an essential piece for the Data Grid, thus

making it imperative to establish an integral and standardized security solution
able to avoid common attacks on the data and metadata being managed. Grid
security research has focused on specific high-level services (for example GSI
[1] and VOMS [2]) instead of providing a systemic view able to encompass even
block-level security features. Work-groups like the Open Grid Forum’s OGSA
Data Architecture [3] and CoreGRID’s Trust and Security [4] have begun to
investigate the challenges related with providing security for grid storage.

In this paper we apply an extended framework to analyze from a systemic
point of view the security guarantees provided by the underlying infrastructure
technologies and two storage technologies commonly deployed in Data Grid
sites, focusing on the typical attacks that can be mounted on the data and meta-
data. Our goal is to identify the security gaps and even redundant security
features that may affect the Data Grid, so that ongoing research may be focused
on fulfilling these needs while keeping a fair balance between security and
performance.

The rest of this paper is organized as follows: section 2 introduces a use
case based on OGSA Data Working Group’s Data Architecture Scenarios [5],
which describe a typical Grid system encompassing commonly used data oper-
ations ranging from replication to long-term archiving. Section 3 presents and
extends the security evaluation framework from [6] so it can be applied for ana-
lyzing Grid storage systems. In section 4 we summarize the security guarantees
provided by state-of-the-art underlying Grid infrastructures. In section 5 the
extended framework is applied to analyze the potential risks and security gaps
of two commonly deployed Grid storage technologies. section 6 concludes
about the results obtained by the analysis and outlines our future work based
on these.

2. A typical use case for Data Grid’s storage services
Using the architectural patterns from [5], Figure 1 presents a typical use case

for the Data Grid, where a user (Client 1) accesses a Rendering Grid Service
to generate some data and then proceeds to replicate it to three different sites
(including a long-term storage). Later, a second user (Client 2) processes the
generated data through a Visualization Service, which is in charge of locating an
appropriate replica and copying the requested data to a local storage service for
better performance. This use case comprises several security-related concerns;
to analyze them we extend a framework originally proposed for the security
evaluation of storage systems in general.
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Figure 1. A typical Use Case for Grid Storage Services.

3. An extended framework for evaluating Grid Storage
Services security

The commonly accepted security services related with the use case shown in
figure 1 include Authentication, Confidentiality, Integrity, Authorization, Au-
diting, Privacy1, Availability and Delegation. From the point of view of the
Data Grid scenario being studied, its subsystems may become attacked in sev-
eral ways, however for the purposes of our research the framework proposed by
[6] will be used and extended with specific Grid-related features to reflect the
main concerns linked with data and meta-data security. To apply this frame-
work we must determine five components: players, attacks, security primitives,
granularity of protection, and user inconvenience.

Players. All of the possible players that one has to consider for protecting
stored data. Each player is listed with a set of legitimate actions it can
perform. Any other action by that player is treated as an attack, and thus
the player becomes an adversary. A list of players applicable to Grid
storage systems includes (i) owners (create and destroy data, delegate
read and write permission to other players, and revoke another user’s
read or write privileges on owned data), (ii) readers (read data once
this permission has been granted by owners), (iii) writers (modify data

1However in in most cases, privacy is seen as a reason for security rather than a security service, as in the
case of Grids used in biomedical research [7].
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once this permission has been delegated by owners), (iv) wire (transfers
data among players into the WAN -not within each storage site-), (v)
group servers (provides Grid-wide Authentication and Authorization -
AA- services for other players), (vi) namespace server (allow traversal
of namespaces, i.e. a file catalog providing Logical File Names -LFNs-
and Storage URL -SURL- information), and (vii) site services (all players
inside the domain of a single site including disk and/or tertiary storage
-tape libraries- of data; we aggregate these into a single category because
they are controlled by a single administrative authority).

Attacks. The set of possible attacks cited in [6] depends on the architecture
of each particular system. A fairly general set of possible attacks that can
be mounted on a Grid storage system (data or metadata) includes (i) by the
adversary on the wire (for instance, an attack mounted on the protocol
used to communicate files to the clients), (ii) by the adversary on the
namespace servers (for instance, an adversary gaining SURL and/or LFN
information), (iii) by a revoked user on the group servers (for instance
where a revoked reader can continue to read files from tertiary storage),
(iv) by the adversary colluding with the group server (for instance an
adversary gaining access to AA services), (v) by the adversary colluding
with the site services (for instance, one where a filesystem directory is
deleted by a user gaining access to Grid files by assuming a valid local
user ID), and (vi) by the adversary colluding with readers or writers (for
instance, a reader passing a copy of a file to an adversary).

Based on their effects on the data, each of the previous attacks can be
further classified into leak attacks (where an adversary gains access to
some data and compromises its confidentiality and the privacy), change
attacks (i.e. an adversary that makes valid modifications to data, but
does not tamper its integrity, only its privacy), and destroy attacks (where
an adversary makes invalid modifications to stored data; this is mainly
linked with data’s integrity and availability, even though this attack may
have been triggered via the underlying authentication and authorization
mechanisms).

Core security primitives. Storage systems implement several primitives
to enable players to securely perform their functions. These primitives
can be categorized into six groups: authentication, authorization, secur-
ing data in-transit (over the wire) and at-rest (on storage devices), key
management and revocation.

Granularity of protection. To limit the overhead of cryptographic oper-
ations, most systems implement optimizations including aggregation of
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players into groups to simplify authorization, and trading off the security
of short-lived keys against the ease of management of long-term keys.

User inconvenience. The level of inconvenience users are willing to
tolerate before they become careless and prone to seek ways to circumvent
security measures.

Applying the framework presented above, it is possible to identify potential
damages caused by attacks that can be mounted on data or metadata from the
Grid scenario introduced in section 2. A few examples of potential attacks
include adversaries in control of the replication service leaking the generated
data from the Rendering Service (i.e. by moving it to the attacker’s site);
adversaries on the wire performing a leak attack on the transmitted data (i.e.
using a network packet sniffer); and it may even be possible for an adversary
with full access to storage site services to steal data from disks (leak attack,
destroy attack) or re-write the stored data with a previous -and valid- version
(change attack).

Damages caused by such attacks can be "combined", thus spreading the
negative effects to every Grid subsystem. Our analysis views Data Grid security
as a whole system, where if a subsystem is compromised then the negative
effects are propagated to others. A property of this systemic view of Data Grid
security is that countermeasures can be applied to the optimal subsystem (i.e.
where overall damage is reduced while performance is maximized), while the
final effect is still conveyed to all of them. In the rest of this paper, we use
the extended framework to analyze the overall security capabilities and gaps
provided by both the underlying state of the art Grid infrastructure, and two
widely used grid storage technologies.

4. Capabilities of the underlying Grid security
infrastructure

This section summarizes the security capabilities offered by state of the art
Grid-related infrastructure (technologies not collocated with the Storage service
itself). In particular we will focus on the underlying Grid Security Infrastructure
(GSI) and an important set of the Authentication and Authorization Infrastruc-
tures (AAI), able to provide an overall security solution to current Data Grid
installations. The reviewed infrastructures are summarized at the end of this
section to show the protection they offer against most of the attacks mentioned
in section 3. In some cases we find that the same security measures are offered
by more than one technology. For our research it is important to find which
of these security features are also implemented by the Grid Data Storage sub-
system, in order to clearly identify not only gaps that may result in a potential
attack, but also the redundant mechanisms that should be optimized to keep a
balance between security and performance.
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4.1 Grid Security Infrastructure
The Grid Security Infrastructure (GSI) [1] is comprised of a set of protocols,

libraries, and tools that allow users and applications to securely access Grid
resources. The Globus Toolkit [9] is a well-known and widely deployed imple-
mentation of GSI. Two mechanisms are defined by GSI: Secure Conversation
-Connectivity layer- and Secure Message -Resource layer-, for authentication
and secure communication (integrity and confidentiality). In the GSI Secure
Conversation approach the client establishes a context with the server before
sending any data. This context serves to authenticate the client identity to the
server and to establish a shared secret using a collocated GSI Secure Conversa-
tion Service. Once the context establishment is complete the client can securely
invoke an operation on the service by signing or encrypting outgoing messages
using the shared secret captured in the context (through a SSL/TLS channel).
The GSI Secure Message approach differs in that no context is established be-
fore invoking an operation. The client simply uses existing cryptographic data,
such as an X.509 end entity certificate, to secure messages and authenticate itself
to the service. Securing of messages in the GSI Secure Conversation approach,
i.e. using a shared secret, requires less computational effort than using existing
cryptographic data in the GSI Secure Message approach. This allows the client
to trade off the extra step of establishing a context to enable more computa-
tionally efficient messages protection once that context has been established.
For authorization purposes GSI can use the SAML standard [10] from OASIS.
SAML defines formats for a number of types of security assertions and a pro-
tocol for retrieving those assertions even from third-party services, therefore
enabling new features like role-based authorization. Finally, GSI provides also
a delegation capability to reduce the number of times the user must enter his
passphrase (single sign-on), this is performed through a proxy certificate [11].

4.2 AAI for Grids
The Virtual Organization Membership Service (VOMS) [2] is an Attribute

Authority that exposes attributes and encodes the position of the holder inside
the Virtual Organization (VO). A Holder may be a member of several groups,
and may hold a special role inside some of his groups. Groups are organized
in a tree structure that comprises groups and subgroups, while roles are not
hierarchical and are associated to the membership in a group. The internal
structure of a VO as defined in VOMS is not a full hierarchical Role Based
Access Control (RBAC). However, currently it is the most widely-used attribute
authority service, and is a de-facto standard for AA in production Grids.

The Privilege and Role Management Infrastructure and Standards Val-
idations (PERMIS) [12] system is an implementation of a hierarchical RBAC
mechanism that makes use of a powerful policy engine to take a policy file
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and then making authorization decisions based on this policy and the Attribute
Certificates it receives. It relies on a non-standardized XML policy language
and since the roles are internally defined to every policy engine, its use is more
appropriate for local sites rather than for VO-oriented environments.

Community Authorization Service (CAS) [13] is an authorization service
built on top of GSI. A user requesting access to a resource contacts the CAS
server which after a GSI-based authentication, issues a restricted proxy creden-
tial with an embedded access-control policy. The user utilizes this credential to
connect to the requested resource, and then the resource itself applies its local
policy to further restrict this access. With CAS, the ultimate decision about
what happens at a Grid resource is removed from the resource provider and put
in the hands of the CAS administrator. CAS does not record groups or roles,
but only permissions,

Privilege Management and Authorization in Grids (PRIMA) system [14]
is an authorization system that makes use of Policy Decision Points and Pol-
icy Enforcement Points interactions like the ones described in [15] to focus on
access control policies, while user attributes come from external Attribute Au-
thorities like VOMS. This approach uses a VO-global specification of privilege
attributes per Role, with local enforcement of privileges using the Grid User
Management System (GUMS) [8] identity mapping service.

Grid-aware pluggable authoriZation management (gPLAZMA) [16] is a
storage-specific security technology, developed for authorization within dCache
[17]. After authentication, gPLAZMA uses PRIMA to query a storage autho-
rization service that calls GUMS for local user mapping. It can operate in a
role-based authorization mode.

4.3 Security capabilities as countermeasures
Table 1 summarizes the security capabilities provided by the infrastructure

reviewed in this section. The layout of the table is based on the framework
proposed by [6] and extended in section 3 to accomplish Data Grid-related
needs. Results are categorized by possible attacks (main columns) and types of
damage – the Leak, Change, Destroy sub-columns –. Cells marked with an “Y”
mean that the system (row) prevents that type of damage caused by this particular
attack. Cells marked with an “N” mean that the system does not prevent the
damage. If a particular attack does not apply to a system, the cell is marked
with a “-”. Our goal here is to highlight how this underlying infrastructure’s
security services can act as countermeasures for the typical attacks that can
be mounted on the data and meta-data. From Table 1 we can see that GSI
mechanisms are common to all other infrastructure technologies, and therefore
in particular the Leak attack is prevented “by default” (it is quite difficult to
execute if GSI’s Secure Conversation is enabled). There may be however a
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considerable performance loss to take into account if this mechanism is being
used into the Grid to move massive amounts of data.

Table 1. Security capabilities as countermeasures.

Attack Adversary
on

wire
(WAN)

Adversary
on

names-
pace
servers

Revoked
user
on

group
servers

Adversary
with
group
server

Adversary
with
site
servicesa

Damage L C D L C D L C D L C D L C D

GSI +
AAIb Y Y Y Y Y Y Y Y Y N N N N N N

GSI+
PRIMA+
gPlazma

Y Y Y Y Y Y Y Y Y N N N Yc Yc Yc

aAdversary with full control of the site services.
bVOMS, CAS, PERMIS.
cSee discussion about conditions required for this countermeasure.

Some other attacks can be also stopped with GSI+AAI technologies; consider
for instance adversaries colluded with the namespace servers, which will be
unable to perform any damage (change or destruction) to the data/meta-data,
because GSI’s mutual authentication and authorization mechanisms based on
cryptographic protocols prevent untrusted servers from interacting with Grid
clients or other services. About the attacks coming from compromised Group
servers, even though they cannot be prevented by GSI or related technologies,
in practice these are hard to carry out, as they would require colluding with
one or more Certification Authorities, Authorization Servers and so on. In the
case of the site services and in particular with the storage service subsystem,
if it is GSI+AAI aware then it will be protected from most of the attacks (this
is the particular case of gPlazma), otherwise only leak attacks are likely to be
stopped.

Finally, under the assumption of an attacker with full control of the site
services2 then even gPlazma and their underlying technologies may not be suf-

2This is the case of untrusted sites, which we expect to become a serious security problem for the Data Grid.



An Analysis of Security Services in Grid Storage Systems 179

ficient to protect against leaks (the data into the storage device is not encrypted),
changes (re-writing stored data with older, but still valid information) and de-
struction (low-level formatting the device). Even though there will never be a
total-security solution for this problem, the security concerns related with Grid
storage services are the entry point for the next section, where state of the art
storage technologies are analyzed within the extended framework presented in
section 3 as a way to provide overall conclusions and research ideas about the
security guarantees and gaps associated with them.

5. Security capabilities of Grid Storage Systems
Current state-of-the-art Grid storage systems are hierarchical storage man-

agement systems (HSM), managing storage distributed on disk and tape li-
braries. In most of the cases the interaction with HSMs is made through the
so-called Storage Resource Managers (SRMs): middleware software modules
whose purpose is to manage in a dynamic fashion what resides on the storage
resource at any one time [18].

Our work is currently focused on the most widely deployed grid storage
systems in European Grids (and in particular within the EGEE infrastructure),
for the time being excluding alternative systems such as the SDSC Storage Re-
source Broker (SDSC SRB) [27]. The SDSC SRB is a client-server system that
exports a unified view of the available datasets while hiding their actual loca-
tion. Users can store or replicate their data collections across several servers,
while maintaining total access control locally. A metadata catalog service sup-
ports user queries related to datasets and their properties, including a mapping
from logical handles to physical file locations. Long-term preservation and
data provenance are important design goals for the SDSC SRB, and we believe
that they should be refelected in security capabilities and protocols. These
issues will be examined in depth during the course of our work-group’s activi-
ties. We anticipate that the framework presented in this paper will allow us to
characterize this system’s security capabilities and pinpoint vulnerabilities.

In the European Grids the most widely used grid storage systems are: dCache
with PNFS [17], DPM [21], CASTOR [22] and STORM [23]. These can be cat-
egorized as systems offering storage distribution across more than one grid
sites (dCache and DPM) and systems operating within a single site (CASTOR
and STORM). Since our analysis focuses on grid distributed storage, we will
present in more detail the security capabilities of the former class of systems.
Our analysis complements previous works that provided an overview of func-
tional capabilities [25] and a performance evaluation [26].

Our goal is to apply the security framework defined in Section 3 as a tool
to determine the potential set of attacks feasible to be performed against the
Data Grid storage systems cited here. It is important to note that the applied
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framework is not intended to allow evaluation of the end-to-end security of a
particular system. This requires careful analysis of each component and the
particular way of combining them, since any secure system is only as strong
as its weakest link. The framework is neither intended as a replacement for
such analysis, but simply seeks to allow a high-level comparison among dif-
ferent systems, purposely leaving some secondary details unexamined. Next
we present a brief survey of each system, including its security capabilities,
followed by a table summarizing potential attacks and damages.

5.1 dCache
dCache/SRM [17] is a grid storage middleware system that combines dis-

tributed heterogeneous disk storage systems under a single filesystem tree. It
also handles data hot spots, hardware faults and replication for high availability.
dCache aims to provide Grid functionalities compliant with definitions of the
LHC computing Grid (LCG) Storage Element storage fabric. dCache supports
a protocol for local access to data, using PNFS [19], an NFS-like service which
allows namespace operations to be performed through a standard NFS2 inter-
face. Actual data transfer is performed through faster channels via a number
of protocols, including a native dCap protocol (DCCP), GridFTP, and HTTP.
For secure wide-area data access, dCache allows opening files using a URL-
like syntax without the PNFS filesystem being mounted, through one of the
supported protocols (dCap, GssFTP, GsiFTP and HTTPS).

Each storage element needs to provide status information (availability, load,
free space). This is currently achieved using LDAP. For managing storage,
dCache supports an SRM interface. Besides namespace operations, it allows
to prepare data sets for transfers directly to the client, as well as to initiate 3rd-
party transfers between Storage Elements (SEs). SRM retries failed transfers
and also handlers space reservation and management.

Applications use dCache by linking a user-level library providing POSIX-
like file I/O calls. This library supports pluggable security mechanisms, where
GssApi (Kerberos) and SSL modules have already been implemented. dCache
can also be connected to tertiary storage systems, using custom protocols depen-
dent on the tape system used on every site. Furthermore, it supports autonomous
data distribution to various pools using rules/preferences. (e.g. all incoming
data are first stored on high-perf disks and later flushed to tape storage). More
complex setups consider load-balancing and other run-time factors. There is
a file replica manager, that maintains several replicas of each file on different
pools according to site or grid-level policies. In any dCache implementation,
a node acts as the "admin" node, also known as the dCache server. This node
runs PNFS and a number of other dCache services. In addition to the admin
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server, many file pools may be added. The pool nodes are where files are stored.
There is no problem having NFSd or GridFTP running on a pool node.

5.1.1 Security Framework Characteristics.

Players. The following four are involved: (i) The PNFS daemon on the
admin node is the namespace server, (ii) Pool nodes are the storage servers, (iii)
Door nodes are the group servers providing authentication and authorization
based on GSI and VOMS services, and finally (iv) Replica managers handle file
replication to storage pools.

Trust Assumptions. Seven assumptions were considered: (i) Storage servers
are authenticated to admin node running PNFS and to clients using dCap or
GssApi, however they are trusted with the data (same for disk or tertiary storage),
therefore dCache is not protected from attacks in collusion with the site services.
(ii) Data are protected on the wire to the clients and through the WAN using
GssApi or SSL, however namespace protocol (NFS2) data are unprotected on
the wire. Upcoming versions will use NFSv4, which can be built on top of a
secure RPC framework (using a plugin architecture). Furthermore, file data are
not protected on the wire within a single site network, where the NFS protocol is
used for namespace operations and local file access. (iii) Data are not protected
on disk or tapes. (iv) Since all authentication and authorization data are present
in the group servers, dCache is vulnerable to attacks in collusion with the group
server on the door nodes. (v) Certificates for access to files are currently being
issued for a large time window (e.g. 12 hours) in most implementations. This
may allow a revoked user to retain access rights to files within this window if
real-time validation is not performed, just as recommended in [20]. (vi) The
namespace servers map file names and attributes to data on storage pools only
available to clients with valid certificates. (vii) Since the replica manager has
copy, move and delete access to files on storage nodes, dCache is vulnerable to
attacks in collusion with the replica manager.

Security Primitives. We have taken the following: (i) dCache provides
create/read and delete access to a file, but does not allow its modification (i.e.
an existing file has to be deleted and rewritten); however, the storage server or
the metadata server (admin node running PNFS) may read, modify or delete
files on storage nodes. (ii) The group server authenticates and authorizes clients
using the GSI and VOMS infrastructure.

5.2 DPM: Disk Pool Manager
The Disk Pool Manager (DPM) [21] has been developed at CERN as a disk-

only Storage Element, supporting the SRM-compliant Storage Element inter-
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faces, without the complications of multiple modes of access and management
of tape storage. DPM offers the following advantages: (i) SRM Interface, (ii)
scalability (allows the management of 10+TB distributing the load over several
servers), (iii) high performance, and (iv) light-weight management. DPM relies
on a MySQL database to store its metadata.

5.2.1 Security Framework Characteristics.

Players. Three players were considered in the analysis: (i) A DPM daemon
offers access to a set of filesystems, located on one or more file-server nodes. (ii)
A SRM service supports the protocol for Grid access to the storage resources,
by translating requests to the native DPM protocol. (iii) A name service, built
over a MySQL database, supports namespace lookup operations.

Trust Assumptions. Our study considered the following: (i) Site services
are trusted if clients pass through the AA services (based on GSI and VOMS)
and hold valid certificates. (ii) Data are protected on the wire to the clients
and through the WAN using GssApi or SSL. Within a single site network data
are not protected on the wire. (iii) Data are not protected on disk or tapes. (iv)
Certificates for access to files are currently being issued for a large time window
(e.g. 12 hours) in most implementations.

Security Primitives. Two main primitives exist: (i) DPM allows create/read
and delete access to files, but does not allow direct file modification. However
the storage and namespace servers within a site may read, modify or delete files
local files. (ii) AA in DPM are based on the GSI and VOMS services, described
in section 4. Grid IDs are mapped to local user IDs for file access.

5.3 Security Analysis Table
Using the same notation from Table 1, we compare in Table 2 DPM and

dCache in terms of their resilience to potential attacks.
As discussed in earlier sections, although both systems rely on GSI+AAI

technologies, the use of non-GSI aware subsystems (PNFS in the case of dCache
and MySQL for DPM) may open the door to attacks to namespace servers that
otherwise could have been prevented. Moreover, the surveyed technologies
assume that site services are trustworthy, therefore an adversary colluding with a
site may perform a lot of damage. For both types of attacks (directed to the WAN
and performed by a revoked user on the group servers) can be alleviated by the
inheritance of GSI+AAI security features. On the other hand, this inheritance
may provoke unwanted redundant features (i.e. authorization decisions taken by
both, local storage systems and Virtual Organizations) resulting in performance
issues. Future work will be aimed to further research this topic. For example,
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Table 2. Summary of security guarantees provided by Grid Storage Systems.

Attack Adversary
on

wire
(WAN)

Adversary
on

names-
pace
servers

Revoked
user
on

group
servers

Adversary
with
group
server

Adversary
with
site
servicesa

Damage L C D L C D L C D L C D L C D

dCache Y Y Y N N N Yb Yb Yb N N N N N N

DPM Y Y Y N N N Y Y Y N N N N N N

aAdversary with full control.
bWithin period of issued file certificates.

even though dCache does not offer any protection against attacks coming from
a revoked user, this countermeasure is achieved thanks to GSI’s authentication
and authorization functionalities.

6. Conclusions
This paper presents the first part of our research on Grid storage system’s

security, analyzing the security of state-of-the-art technologies using a frame-
work originally proposed for generic storage systems which we have extended
to Grid-specific configurations. Our goal is to describe the potential set of at-
tacks on the data or the meta-data along with the guarantees currently provided
by the surveyed technologies, as a way to find out not only the gaps that must be
covered, but also the mechanisms that should be optimized due to the redundant
security services they are providing at the different Grid layers. Most technolo-
gies rely on, or inherit their security features from the underlying Grid Security
Infrastructure (GSI) and generally only need to call-out a third-party service
for enhanced authorization decisions (e.g. VOMS). GSI provides a wide set of
base security capabilities, but still is susceptible to attacks where the adversary
has taken control of the groups servers; however this is an unlikely scenario
because most Certification Authorities and Authorization servers implement
strong security mechanisms for their own protection.

On the other hand, the attacks where the adversary has taken total control
over the site services are more dangerous and relevant to our research, because
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in this case none of the surveyed technologies are capable of providing adequate
protection. Let us focus, for example, on a scenario where the attacker has taken
control of the storage device itself: even though low-level encryption may be
enough to protect the assets, what happens with the encryption capabilities
provided by upper layers like GSI? Is it feasible to re-use them at the lower-
layers to improve performance? Having identified the security gaps related with
untrusted site services, our ongoing work will focus on the mechanisms able to
manage them while keeping a fair balance between performance and security.
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Abstract Storage elements that can scale to large capacities and high-performance are an
essential component of future GRID infrastructures, especially for supporting an
increasing number of data-intensive applications and services. This paper studies
two approaches for building scalable networked storage elements: enterprise-
level, Fibre-Channel-based Storage (FCS) and commodity, Cluster-based Net-
worked Storage (CNS). First we review the characteristics of FCS, which is
currently widely used in high-end enterprise-level installations, discussing var-
ious aspects, such as scalability, performance, availability, manageability and
security. Then, we compare it with CNS and consider how features of high-end
specialized systems may be provided on top of this new architecture. We believe
that CNS has a potential for replacing FCS in many application domains; how-
ever, there is a need for addressing the feature gap between FCS and CNS at the
architectural and storage management layer.
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1. Introduction
Recently, there has been a lot of interest in building cost-effective Storage

Elements (SEs) that can scale to large capacities, in the range of tens of PBytes,
and high-throughput, i.e. tens of GBytes per second. Such storage elements are
required to support an increasing number of data-intensive applications and ser-
vices that impose stringent requirements on modern storage systems. The main
challenge in this direction is to scale capacity and throughput without losing
important features, such as reliability and availability, flexibility, manageability,
and security.

Scalable storage elements traditionally rely on custom, storage-specific com-
ponents, such as FC (Fibre Channel) or SCSI (Small Computer Systems In-
terface) controllers, interconnects, and disks. Fiber Channel-based Storage
(FCS) systems provide attractive features, however at high cost. Therefore
they are mainly used in applications that require strong guarantees and high
performance and flexibility such as banking, e-commerce, video-streaming and
supercomputing. The centralization points present in these architectures facil-
itate providing strong reliability guarantees and simplify storage management
tools; however, they may eventually limit storage system flexibility, capacity,
and performance.

Recently, scalable storage systems have started to evolve through significant
architectural changes that will allow them to take advantage of commodity com-
ponents (CPUs, memory, interconnects, disks). These Commodity-based Net-
worked Storage systems (CNS) will be able to follow technology curves better
than specialized storage architectures and offer similar or improved functional
and performance characteristics at lower cost. Moreover, their open architec-
ture may allow greater flexibility in closely matching the requirements of users
and applications.

FCS systems are built out of custom storage devices, designed and optimized
for I/O processing purposes. FCS systems use also storage-specific communi-
cation protocols such as Fibre Channel Protocol (FCP). Figure 1 shows a typical
FCS setup. Application servers are connected to storage resources through the
Storage Area Network (SAN) and FC Host Bus Adapters (HBAs). Typical
storage resources are disk matrices, containing disk drives and controller(s)
equipped with storage processors (CPUs), cache memory, and XOR engines
for calculating RAID checksums. Matrix controllers present to application
servers logical volumes, which are virtualized physical drives. There are many
potential and actual centralization points in FCS, which may help providing reli-
ability guarantees. However, they can limit important features such as capacity,
throughput and increase system cost.

Figure 2 shows the general architecture of a commodity, cluster-based net-
worked storage system (CNS). Typical storage nodes include one or two storage
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Figure 1. Architecture of FCS.

controllers, each connected to a subset of disks. Depending on the target appli-
cation domain, the storage node may also include additional CPUs and memory.
The exact I/O paths for data and control transfer may vary, depending on the
specific node architecture.

CNS is currently being used (mostly) experimentally in various application
domains. Cluster-based networked storage systems provide numerous advan-
tages: they benefit from the technology curves for commodity components
(CPUs, memory, interconnection), they are more flexible and may adapt to
broader application needs, they can scale to larger systems providing higher ca-
pacities and performance, they may employ a higher degree of redundancy, and
they exhibit lower acquisition costs. Cluster-based storage systems introduce
and rely on two architectural characteristics to provide their many advantages.
Firstly, they eliminate centralization points in the storage system and move
intelligence from hardware to software providing more flexibility. Secondly,
they rely on commodity components that address larger markets and may take
advantage of economies of scale. These architectural characteristics are also a
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Figure 2. Architecture of CNS.

source of numerous challenges in building cost-effective, scalable storage sys-
tems. For instance, they require extensive system software support for sharing
resources and data, reliability and availability, security and management issues.

In this work we examine important features of FCS. The goal is to present
today’s state-of-the-art in high-end networked storage technology, discuss its
most important features and limitations, and examine if and how emerging
architectures based on commodity technologies may lead to similar or improved
features at a better cost-efficiency. We also try to discover the features that
CNS may need to support before replacing FCS in new application domains.
In particular, we examine capacity and performance scalability, reliability and
availability, manageability and flexibility (virtualization), and security.

Architectural evolutions of the storage systems impacts also Grid systems.
Currently, Storage Elements are centralized, custom-technology-based storage
systems, whenever large capacities of SEs are required. However, the relatively
high costs of custom solutions along with growing CPU speeds of commodity
computer systems and rapidly increasing capacities of ’desktop-class’ disks
may result in a dramatic change to SE architectures.

The rest of this paper is organized as follows. Section 2 discusses the fea-
tures and limitations of FCS. Section 3 presents CNS features and contrasts
them to FCS. Section 4 comments on related work and Section 5 includes our
conclusion.
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2. Categorization of FCS features
In this section we discuss the main features of FCS using the categories

defined in the previous point.

2.1 Capacity and performance scalability
System interconnect network. An important component that may limit

storage system scalability is the internal system interconnect. FCS intercon-
nect typically consists of a front-end network and a back-end network (Figure 1).
The front-end network connects application servers to matrix controllers. The
back-end network inter-connects disks drives and matrix controllers. Each of
these networks has different features that impact scalability of the whole storage
system. The front-end network consists of application server HBAs, disk ma-
trix front-end I/O ports, and SAN switches. Front-end networks typically are
switched (FC-SW, Fibre Channel SWitched) and use star, tree, mesh and tiered
topologies. Application servers and storage devices are sometimes connected
to multiple, independent SAN fabrics, which improves performance and avail-
ability but also increases costs. The overall limitation in FCS front-end network
is the relatively high cost of SAN network devices. The back-end network con-
sists of disk drives’ I/O interfaces, back-end I/O ports in the matrix controllers,
and interconnects. Disks drives in matrices are typically grouped in 14-16-drive
JBODs (Just a Bunch Of Disks), enclosed in chassis and connected to at least
one matrix controller. The most popular link topology used in back-end net-
work is loop (FC-AL, Fibre Channel Arbitrated Loop). This fact influences the
back-end network scalability: practical installations use a maximum of about
40 disk devices per single FC loop in order to avoid link saturation, performance
and stability degradation. For performance and availability reasons, disk matri-
ces are equipped with multiple back-end loops, each of which can span 12-20
JBODs. Due to discussed limitations, scaling the back-end network is difficult.
Expanding the total system capacity and performance beyond the capacity of
a few matrices may be possible, but at a prohibitive cost, due to high prices of
controllers and fabric in multi-matrix topologies.

Overall, from an architectural point of view, FCS can reach extreme capac-
ities. The front-end connectivity allows FCS systems to provide thousands of
ports and the back-end network allows disk matrices to contain hundreds of
disk drives. Thus, given current disk capacities – around 750 GBytes/spindle in
early 2007 and 1TByte/spindle announced for the end of 2007 – realistic FCS
systems can reach capacities of hundreds of peta-bytes (PBytes). However,
cost limitations impose more realistic limits. Large FC-based disk matrices
incur very high costs that are prohibitive for many application domains. Us-
ing SATA-based matrices (instead of FC-based ones) may improve these costs;
however, also at reduced reliability, availability, and performance. Moreover,
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when the size of FCS network grows significantly, keeping the reliability and
performance at a constant level is very difficult and expensive.

Processing and Memory. Processing and memory resources of FCS compo-
nents are based on high-end, storage-specific architectures. Storage CPUs can
offer much better performance in I/O requests processing than general-purpose
CPUs with similar clock speeds. However, even such specialized resources can
limit the capacity, performance, stability and reliability of the storage system
at some point. The demands concerning matrix performance and FC switches
throughput may grow during the system life-cycle. Therefore, controller CPU
and memory as well as FC switches resources must be over-provisioned by
design, which requires additional initial cost. Scaling specialized processing
and memory resources in FCS is more complicated and costly than upgrading
the commodity CPUs and memory modules. Besides, upgrade options may be
reduced due to marketing or economic reasons. From the end-user perspective,
the only way to scale processing resources is often the upgrade of the whole
component (controller, switch) or adding new components along with system
reconfiguration. Both solutions are costly, and may be disruptive to system
operation.

Throughput. Data throughput in the FCS system is the product of disk-
controller, controller-internal, controller-network, network-core, and network-
server throughput. Disk-to-controller throughput is mostly affected by the
number of disk-drives in the matrix and the throughput of the back-end net-
work. These parameters should make it possible to accommodate the maxi-
mum planned performance by design, since scaling throughput beyond initial
planning is not straight-forward. Typically, there are only two ways of scaling
it: adding more back-end ports to the controllers or to upgrade link speeds,
e.g. from 2Gbit/s to 4Gbit/s. Internal controller throughput should be care-
fully considered at the system design phase, since it is difficult to upgrade later
on. Controller throughput upgrade options are limited to controller’s processing
and memory resources or replacing whole controllers by more powerful models.
Although typical internal controllers’ throughput is quite impressive (500-900
MBytes/s) given today’s technologies, unfortunately it is static during the matrix
life-cycle. Controller-to-network throughput mostly depends on the number of
front-end ports used for storage devices in the network and the throughput of
each link. Each matrix may employ multiple controllers connected to the same
or independent SAN fabrics. Controllers are typically equipped with 1-8 front-
end ports. Scaling the front-end connectivity of matrices is possible by adding
ports to controllers or by upgrading link speeds. Overall, increasing disk to
front-end network throughput beyond discussed limits is often done by increas-
ing the number of matrices, which is usually prohibitive from the point of view
of costs and system operation. The front-end network throughput depends on
the link speed, the network topology used, and usage of multiple Inter-Switch
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Links (ISL). Increasing link speed is very costly since it may require upgrading
many components: switches, HBAs and matrices’ front-end ports. Another op-
tion is to modify the topology of the network in order to eliminate hot-spots, e.g.
by migrating from star to mesh or adding more ISLs. However, this approach
usually incurs a highly non-linear cost due to the increased number of switches
required by such changes. Finally, server-network throughput depends on the
type and number of HBAs used in servers and the throughput of links. Typically,
servers are connected through one or two FC-SW links (2-Gbit/s or 4-Gbit/s)
per fabric. Using more HBAs along with server-side link trunking or using
multiple independent fabrics one can increase this throughput. Note however,
that the cost of a single HBAs is very high. To sum up, high throughput in FCS
storage systems is guaranteed by the usage of storage-specific technologies
in storage and network devices along with appropriate network configuration
and topology. However, while being high-end, FCS components are relatively
costly and have static features.

2.2 Reliability and availability
FCS systems are typically configured to avoid a single point of failure and

provide a dual path from any server to any block of data. Additionally, each
data block is stored in a redundant manner, i.e. it is replicated on multiple disks
or protected by RAID checksums.

Providing dual paths requires replication of resources. Typically, application
servers have multiple HBAs and are connected to multiple fabrics. Additionally,
particular fabrics may have redundant paths. FC switches have redundant, hot-
swappable power supplies, fans, or a fully redundant architecture. Disk matrices
may be equipped with multiple controllers, which can have a redundant design
themselves. Each disk matrix may connect to multiple independent fabrics.
Disks drives are typically hot-swappable. FC and SAS drives are dual-ported
and accessible by two controllers using independent back-end links. Single-
ported disks can be connected to controllers using passive (and thus fault-
tolerant) multiplexers. Finally, firmware upgrade to system components can
happen in a non-disruptive manner, e.g. two-step controllers update in matrices.

Avoiding a single point of failure in FCS is sufficient in most practical sit-
uations. Techniques of achieving this are standardized and well-documented.
However, in some cases, a higher level of redundancy would be useful, but
configuring FCS systems in that way may be problematic and may incur sig-
nificantly higher costs.

Data replication and protection techniques in FCS systems include: RAID
support, mirroring and snapshot support as well as matrix cache memory content
protection. RAIDs make user data available in the presence of data block
damage. Hot-spare features and the use of appropriate RAID levels enable
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continuous access to data in case of disk drive failure. Apart from RAID
support, local and remote data mirroring is used to protect against environmental
disasters such as fire and floods. Protecting controller cache contents from
failures is very important for data coherency. The issue is quite complex, and
it is covered in FCS by techniques such as cache scrubbing, cache coherency
techniques, and cache content protection against utility failure, i.e. battery-
protection and cache vaulting. Critical configuration data of FCS system are
saved to a non-volatile media such as flash cards or selected disk drives in
matrices or they may be exported to external media or management databases.

Finally, FCS systems employ detailed component monitoring and events re-
porting, usually in each component’s firmware. Monitoring applies to failures
and performance measures (error rate, load, usage, efficiency). It covers var-
ious FCS components: switch ports, zones, disk controllers, LUNs, RAIDs,
CPUs, caches, disk drives, fans and power supplies. Any problems can be au-
tomatically reported by email or SMS alerts and SNMP traps. Active integrity
monitoring techniques include periodic disk surface scanning and trial read and
write operations to unused areas of disks during low traffic periods.

In summary, the reliability and availability techniques of the FCS systems
are well-established and proved. They are supported by fundamental system
architecture features: centralization that makes it possible to define semantics
during failures as well as redundancy of data paths and blocks, which pre-
vents from possible failure effects. Reliability and availability of FCS is also
supported by numerous additional techniques employed in FCS components.
However, an important limitation is that these features are achieved at a very
high cost – redundancy multiplies the total costs of the system and reliability
and availability features must be paid by end-users in the form of a very high
purchase price. Another limitation is that higher-than-default levels of resource
redundancy are sometimes hard to achieve due to a centralized architecture and
static nature of FCS components.

2.3 Security techniques in FCS
Basic security techniques supported in FCS systems are: (a) traffic separation

and access control, (b) support for confidentiality of data transfer and data
storage.

Traffic separation and access control. A simple technique for access con-
trol in SAN networks is LUN masking. A particular disk volume can be mapped
to selected servers and the requests from all other servers in the network can
be rejected by matrix controller. Additionally, FC switches support zoning that
allows to logically separate the data traffic between selected devices in FCS.
VSAN is a technique that allows several ports or FCS devices to be grouped
together and form a virtual fabric with full fabric functionality. However, the
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practical effectiveness of the above-mentioned techniques is actually limited,
e.g. they can be bypassed by a malicious server with a spoofed address. Over-
all, these simple security techniques constitute the first line of defense in FCS
systems. A second line concerns sharing the FCS fabrics among several or-
ganizations. For that purpose access control lists (ACLs) for fabrics, ports,
and other fine-grain mechanisms combined with PKI authentication are used.
Additionally, monitoring, auditing, event logging, integrity checks and secu-
rity threat detection techniques may be employed in FCS. Unfortunately, native
FCS systems do not support them and external tools are necessary, obviously
at additional costs.

Data confidentiality and integrity techniques. An important issue in FCS
systems is the lack of the native support for strong security techniques related
to data links and data storage. Originally, FCS systems were designed to be
dedicated, physically separated infrastructures used by single organizations.
However, many security threats originate from the inside of organizations man-
dating the use of strong data encryption. Real-time encryption of high-volume
information accessed at high-throughput is very challenging – it cannot be per-
formed by the application servers because it is computation-intensive and would
consume too many computing resources. To deal with encryption performance
issues, hardware-based or mixed, i.e. software-hardware-based, encryption so-
lutions are used. However, even these specialized encryption systems have
limitations related mainly to performance (not ’at wire speed’), scope of their
possible usage (not for all data), cost (e.g. $30,000 per single encryption ap-
pliance) and administration overhead (e.g. key loss risk), and finally, mutual
compatibility of different vendors products [1].

2.4 Management and flexibility
Actual usability of the storage system strongly depends on the management

techniques (called sometimes virtualization techniques) available in it.
Management tools for FCS components cover the network components as

well as data storage devices, client hosts, and the data itself. FCS systems com-
ponents can be controlled, configured and monitored through graphical and text
interfaces. They can also generate asynchronous, event-triggered alerts in order
to inform system administrators about critical situations. Virtualization tech-
niques for FC switches enable to setup ports, trunking, fabric routing, zoning
and name services. Name Services is a mechanism that provides translation
between world-wide names (WWNs, physical addresses of FCS devices) and
symbolic, human-readable node names. This helps to avoid potential mistakes
of a human operator. An important management mechanism is fabric State
Change Notification, which allows notification to registered SAN nodes if a
change occurs to other specified nodes [2]. Management tools for disk matri-
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ces are used for two main purposes: to control the arrangement of the logical
data volumes on the physical devices, and to setup and monitor another param-
eters of matrix operation. It is possible to define RAID volumes: RAID level,
stripe size, default serving controller, spare disk assignment as well as to re-
size RAID during system operation. Logical volumes-related features include:
creation, mapping to hosts and LUN masking. Other mechanisms allow to
configure the controllers’ collaboration mode: active-active vs. active-passive;
cache management policy: for random, sequential and mixed access patterns;
cache stripe size and cache write mode: write-back or write-through.

Native FCS virtualization mechanisms support only basic management op-
erations. More complex techniques such as virtual volumes spanning multiple
matrix controllers, snapshots, versioning, compression and encryption are avail-
able as external software- or hardware-based solutions. A still unsolved issue
concerning management and virtualization in FCS is the lack of a complete
and standardized approach. Several existing management tools are limited to
specific areas of the system, a particular level of the system component and
data abstraction, or simply a small set of a vendor’s products. This makes man-
agement of heterogeneous FCS systems complicated and costly, and the actual
scalability hard to achieve. Standardization efforts partially solve this problem
[3]. Despite these efforts and existence of extensive management tools for FCS
systems, guaranteeing service level agreements (SLAs) in complex FCS setups
is still challenging. This is caused by the fact that multiple users and applications
may share physical FCS resources, including HBAs, switches, links, storage
controllers, caches, and disk drives. Overloading any resource in the I/O path
may degrade performance for all applications that share it. Logical separation
of FCS components does not solve this issue. Therefore, the only method to
provide strong, per-application guarantees is either to use dedicated FCS sys-
tems or apply full component redundancy along with careful system design,
deployment and testing. On the other hand, this approach incurs prohibitive
costs for many application domains. Management automation in FCS systems
could significantly reduce associated costs. Activities that can be automated
include, for example, using Hierarchical Storage Management (HSM) systems
or Information Life-cycle Management (ILM) concepts; however, there is still
no complete solution for management automation – HSM systems cover only
part of the problem and ILM concepts are far from common practice.

3. From Fiber-Channel-based to Cluster-Based
Networked Storage

One of the main advantages of CNS systems is expected to be the use of
scalable, commodity interconnects both for storage and client nodes. Such
networks have been demonstrated to scale very well to thousands of nodes at
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affordable costs [4]. Furthermore, new emerging 10GigE Ethernet networking
switches, feature path fail-over functionality, similar to FCS, but at a cost that
is constantly dropping [5].

The capacity of a CNS system depends on the maximum capacity of the
interconnects used. This specifies the maximum number of storage nodes in
the system as well as the maximum number of clients that may access the storage
system. Today, a storage node may host up to 32-48 disks [6] resulting in 10’s
of TBytes per storage node. Given that modern commodity interconnects can
scale to thousands of nodes, CNS can practically scale to very large numbers
of disks and 100s of PBytes. Finally, adding more clients to a CNS system
corresponds to adding more nodes in the interconnect used by the system.

CNS allows both memory and processing resources to scale. Storage nodes
can be equipped with one or two CPUs and large amounts of memory without
significant increases in base system cost, since this is commodity hardware.

Disk-Controller throughput in CNS can scale by increasing the number of
disks in each storage node. In general it is expected that each storage node
will hold a small number of disk controllers (1-4) with each controller holding
a small number of disks (2-16). This provides a wide range of options in
scaling the disk-controller throughput in each installation. Controller-Network
and Client-Network: CNS storage nodes use 1-2 network links to connect to
the system interconnect (1 or 10 Gigabit Ethernet, Myrinet, Infiniband). The
maximum number of links that may be used depends on the bandwidth available
in the internal storage node paths. Modern storage nodes can have I/O buses
that are able to achieve throughput at the level of 40 Gbits/s full duplex, e.g.
two slots of 8x PCI-Express. However, data may have to be staged in the main
memory while being transferred from disk to the network (or vice versa). Thus,
CNS storage nodes can support multiple network links, e.g. 4x1 Gigabit/s or
even 2x10 Gbit/s links. Moreover, as both disk controllers (storage nodes) and
clients connect to the system using the same commodity interconnect, similar
characteristics apply to client-network throughput scaling.

One of the main advantages of CNS is that it uses a general-purpose inter-
connect that scales to a large number of nodes in various application areas such
as high-performance cluster computing [4]. Although many issues related to
interconnects and communication protocols that will be used in CNS systems
are not yet clear and are the subject of current research [7], these interconnects
will offer significantly more throughput and configuration flexibility at a lower
cost compared to traditional FC interconnects. Furthermore, since the same
interconnect can be used both for controller-controller and client-controller
connectivity, we expect that CNS will, in the long-run, have better scalability
characteristics compared to FCS.
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3.1 Reliability and availability
The reliability of commodity hardware is not really understood yet. Recent

results [8] in large populations of disks indicate that drive failure rates in SCSI,
FC, and SATA drives are in reality close. This is counter-intuitive for low-cost
drives, compared to the much higher-cost FC and SCSI “enterprise” disks with
their much higher MTBFs. This work concludes that there are little differences
in failure rates, which may be an indication that disk-independent factors, such
as operating conditions, affect failure rates more than component-specific fac-
tors. Architecture-wise, a main challenge with CNS is that, unlike FCS, CNS
needs to support storage volumes that span (a large numbers of) storage nodes.
In FCS systems a volume is typically confined to a single storage controller.
This single controller has complete control over all accesses to volume blocks.
All accesses to this block can be ordered and thus, it is easy to deal both with
consistency issues and failures. Accesses to different blocks are usually ordered
and/or made atomic by mechanisms that are external to the FCS system and
are usually part of the file system. CNS, on the other hand, needs to support
volumes that span multiple storage nodes (controllers). Although CNS may
be configured with volumes being confined within a single storage node, this
imposes significant limitations to how CNS may be configured and how it may
adjust dynamically to the application needs. For instance, if volumes are con-
fined within a single storage node, they may span only a limited (and relatively
small) number of disks; replicated blocks may reside only within a single node,
requiring replication of all node components to achieve dual path redundancy;
accesses to disk blocks are limited to a small number of network links.

Thus, although a CNS system may be configured similarly to FCS, many of
the benefits of using CNS derive from its more distributed nature and the ability
to distribute volumes across storage controllers. However, this imposes signif-
icant challenges that are the subject of current research. Fundamentally, CNS
systems need to provide ordering of accesses to distributed copies of a single
block and ordering of accesses to different blocks of a volume (and their copies)
in the presence of failures. Overall, offering high reliability and availability in
CNS systems is the topic of current research. Today research prototypes ex-
ist for providing RAID functions across storage nodes, using erasure coding
techniques, or stronger voting techniques [10].

3.2 Security
CNS systems use interconnects that may perform similar access control and

traffic separation as in FCS systems. Both have been investigated extensively
in local area networks and are currently the subject of research in higher-end
system area networks. However, the main difference from FCS is that CNS
interconnects and nodes tend to be ’general-purpose’, as opposed to specialized
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FCS interconnects and controllers, and thus are more susceptible to attacks. For
instance, given that a CNS system may allow access to the interconnect to large
numbers of clients for direct access to storage, ’illegal’ or malicious clients
may obtain access to the network and thus will be able to send I/O requests to
storage nodes. Currently, given that all I/O checks are performed in traditional
filesystems, storage nodes reply to all I/O requests, providing access to raw
blocks. Such problems and their solutions are currently open research topics
[11].

3.3 Management and Flexibility
If a CNS system is configured to provide similar guarantees and semantics

to an FCS system, then existing storage management tools can be used on
top of CNS systems. However, the real potential of CNS is to provide higher
flexibility, reliability, availability, and security compared to FCS systems. In
this case, management tools will also need to adapt to new capabilities. Thus
management tools should be able to automatically deal with many of the issues
that today require human intervention and expertise. Currently, there is very
little progress in this area and the role of future research is expected to be
significant [12].

4. Related Work
Recently, there has been a lot of research work in enabling cluster-based

networked storage systems. Previous and current work in the area includes:
Today, building scalable storage systems that provide storage sharing for mul-
tiple applications relies on layering a distributed file-system on top of a pool
of block-level storage. This approach is dictated by the fact that block-level
storage has limited semantics that do not allow for performing advanced stor-
age functions and especially they are not able to support transparent sharing
without application support. Efforts in this direction include distributed cluster
file systems often based on VAXclusters [13] concepts that allow for efficient
sharing of data among a set of storage servers with strong consistency semantics
and fail-over capabilities. Such systems typically operate on top of a pool of
physically shared devices through a SAN. However, they do not provide much
control over the system’s operation. Modern cluster file-systems such as the
GFS [14] and GPFS [15] are used extensively today in medium and large scale
storage systems for clusters. However, their complexity makes them hard to
develop and maintain, prohibits any practical extension to the underlying stor-
age system, and forces all applications to use a single, almost fixed, view of the
available data. The Federated Array of Bricks (FAB) [10] discusses how storage
systems may be built out of commodity storage nodes and interconnects and yet
compete (in terms of reliability and performance) with custom, high-end solu-
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tions for enterprise environments. Ursa Minor [16], a system for object-based
storage bricks coupled with a central manager, provides flexibility with respect
to the data layout and the fault-model (both for client and storage nodes). These
parameters can be adjusted dynamically on a per data item basis, according to
the needs of a given environment. Such fine grain customization yields notice-
able performance improvements. Previous work has also investigated a number
of issues raised by the lack of a central controller and the distributed nature of
cluster-based storage systems, e.g. consistency for erasure-coded redundancy
schemes [17] and efficient request scheduling [18].

5. Conclusions
Our analysis shows that FCS has been fairly successful in providing high scal-

ability and advanced management features, fulfilling stringent requirements on
capacity, performance, reliability, availability, and manageability. However,
FCS exhibits certain architectural and functional limitations and results in high
complexity and cost. For these reasons, the shift towards more commodity
architectures for storage elements is an important trend, which is increasingly
appealing due to economical and scaling reasons. Although CNS has a signifi-
cant potential to reduce system cost and eliminate functional limitations, there
is still a number of open issues that need to be addressed before CNS prototypes
can be deployed in demanding production environments. Several open research
issues exist, mostly in the areas of reliability, security and storage management.
Although, the shift towards CNS will have an impact on the nature of the storage
subsystem in Grid infrastructures, higher level Grid services and architectures
should start considering the challenges and opportunities lying ahead.
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Abstract Grids allow large scale resource-sharing across different administrative domains.
Those diverse resources are likely to join or quit the Grid at any moment or
possibly to break down. Grid monitoring tools have to adapt supporting access
information to these heterogeneous and not reliable environments. There is a
wide rage of types of resources to be monitored or entities, with different na-
ture, characteristics and so on. These issues make the task of gathering Grid
information complex to treat, and it is difficult to provide a generals ways for
accessing to all this information. In this paper we propose a set of functional-
ities that a Grid Information System should provide. We describe the Palantir
meta-information system that has been designed for uniform the access to dif-
ferent monitoring and information systems and that implements all the discussed
functionalities. Moreover, we present real examples that state how Palantir has
been integrated providing the uniform. access to systems with heterogeneous
information providers.
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1. Introduction
As other Grid middleware components, monitoring services have to adapt to

the characteristics of Grid architecture. They should provide uniform access to
information and resources, ways to discover which capabilities it has and how
to access it.

In the eNANOS [1] architecture we needed a new component that would
allow accessing to all the information related to the entities (a Grid entity is
any software or hardware component that is able to provide information) that
are involved in our system, i.e: Grid jobs, local processes, resources and so
on. This component should integrate and merge information from the bottom
part of the Grid, coming from the local components of the centers (such as
the eNANOS scheduler) with information coming from the top components
of our architecture, in our case from the eNANOS Broker. The nature of the
information that it would provide would be much diversified: information from
the resource monitoring systems, from the job monitoring systems, performance
predictions from predictors etc.

For achieve this goal, our first approach consisted on having a deep study
of the available monitoring tools and try to adapt to our requirements the more
appropriate one. However, at the best of our knowledge we realized that any of
them matched all the requirements that we had. Using our experience in Grid
monitoring and information systems obtained in the HPC-Europa project [2],
we designed a kind of meta-information system that would implement all the
needed functionalities.

The presented system is not intended to substitute any of the other existing
monitoring or information tools. It is intended to uniform the access to all
the information provided by them. Furthermore, as has been discussed in [2]
and [3], most of the HPC centers have already deployed their own site-specific
HPC and Grid infrastructure. Therefore, an additional requirement is to keep
the autonomy of HPC centers allowing them to use their favorite Information
Systems and Information providers.

The goal of this paper is to discuss the need of common and homogenized
information protocols, information data models and information access func-
tionalities in the Grid. We propose as a possible solution the Palantir meta-
information, and present how the different requirements are provided in its
design.

In the first part of the paper we present the motivations that let us to develop
the Palantir system. In the second part we present the data model that has
been designed for accessing to all the entities information, the architectural
components that integrate the system, and finally a description of the main
functionalities that will be provided to the Palantir users.
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2. What do we need?
Usually, information systems (IS) do not use to provide all the information

that administrator or users want. For example in [2] we stated that the Grid
brokers are continuously providing new types of information, and the users and
Grid components want this to be available as soon as possible. The IS should
provide mechanisms for extend their functionalities and the set of information
that they provide.

The Grid information providers (brokers, schedulers, monitoring systems
etc.) frequently allow accessing to diversified information with different format
and semantics. The IS that are providing access to such information should
provide simple and generic APIs for query it. This property of generality
is especially important due the information may have different semantic and
structure, and new entities may appear in the future. Regarding this access there
are two factors that must be taken in consideration:

The methods that the API provides: they should provide mechanisms
for discover the available entity types, its characteristics, the information
they provide and the real entities that can provide this information; and
mechanism for gather this information of each of this entities instantia-
tions.

The data model used for conveys the required information. The model
should not be linked to a specific kind of entities/resources (such as physi-
cal resources like hosts or network, or software resources like applications
or jobs).

Related to this issue of how to access the information, there is an important
question that the IS should manage itself: where the information is stored?. In
the current Grid architectures and systems the user has to know exactly where the
information can be retrieved. For instance, if the user “fguim” wants to know the
state for the job “grid123@pcmas”, he has to know that this information has to
be retrieved queering the broker eNANOS that is running on the host “pcmas”.
This problem may seem quite obvious to solve in some small architectures,
however it can become a challenge for users in bigger systems.

Nowadays how to access the information is not only the unique key for the
Grid consumers. Controlling to which information the users are accessing is
also a mandatory goal when installing the IS to the real enterprises and Grid
systems. Security is crucial issue when accessing to the resources information.
They should take into account aspects as accounting, user privileges, commu-
nication security etc.

It is pretty common that some resource can only be queried by users or
applications that have been granted before, for instance only the user that have
submitted a job or an administrator can know its performance. Furthermore,
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the coming Grids markets, like the models proposed by Dr. Buyya [4], needs
this support for become a reality.

Figure 1. Information workflow in the Grid

The economic Grid is a clear example of an architecture that requires an
information system with all the functionalities that we have discussed. Such
Grids have to provide access information like bills, resource usage, users, banks
accounts etc. It is clear that new entity types may appear and disappear contin-
uously in such environments.

On the other hand each of these entities comes from a very different nature:
the bank entities come from the economic namespaces, while the resource usage
comes from the computer science domain. In such dynamic and diversified
environments the IS must provide a very generic data model. This data model
should be able to convey information like the users profile, thread/process/job
performance etc.

The coming Grids for the 2010 are supposed to have hundred up to thousands
of elements (entities). Each of them may have the role of information provider
(IP). At this point, users/applications will not be able to know exactly where the
information can be collected. Moreover, they will not know where the informa-
tion is stored and who is providing it. IS will have to implement mechanism for
discover exactly where the information that users are requiring is stored. For
example: we can not expect a user will know that the resource consumption
for the job “job123@pcmas” has to be queried to the IS “eNANOS@BSC”, but
the consumption for the job “job124@kadesh” has to be queried to MDS.
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Figure 1 exemplifies a situation where a unified mechanism for accessing
the information it is required. There are four different components (a financial
entity, a StorageSystem, an HPC-Resource and the user) that also have the
role of IP. Each of this components may use different IS for publishing its
information. When the components have to interact between them, they have
to be aware of the format used for querying them, the format of the replies, its
semantics etc. Clearly this situation becomes unsustainable when the number
of information providers increase.

3. What can we do?
We carried out a deep study [5] about the more representative information

systems available in the research area as a basis of our design: Globus Monitor-
ing and Discovery Service (MDS) [6], GridLab Mercury [7], Network Weather
Service (NWS) [8], CrossGrid OMIS Compliant Monitoring service for the
Grid [9], and Ganglia [10].

We did not found any of them that exactly match all the requirements that
have been discussed before. The main lack was the possibility of extending their
functionalities and providing generic and uniform access to all their information.

However, all these IS provide very useful information. As each of these
systems is mainly specialized in a specific domain, it is able to provide a high
quality data about its namespace (job monitoring, resource monitoring etc.). At
this point we the question was: why not unify the access to all these IS?

This question was the base for the Palantir meta-information system designs
(see Figure 2). Its main goal is provide a uniform access to the whole Grid
information providers.

Figure 2. With a unified protocol
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4. Palantir in the eNANOS system
Currently, we are mainly focused in providing access to all the components

that are involved in the eNANOS architecture plus some other IS. This uniform
information access will simplify notoriously the collection of data done by all
the elements of our system. Figure 3 shows all the information providers that
are being currently integrated as a part of the Palantir installation done in our
system. Mainly there are four kinds of information providers:

Resource monitoring IS. (Ganglia)

Job Monitoring IS. Including both Grid and local job monitoring infor-
mation (with information such as job / process / thread performance).

Performance predictors. IS Including NWS and a set of predictor modules
that have been designed by our research group.

Service state information IS (MDS). They will provide information about
the state of the services that used by the other components (applications
etc.).

Progress and performance indicators API. It will provide both absolute
and relative information about the progress of the applications through a
library and a run-time included inside the eNANOS framework [11].

Figure 3. Palantir in the eNANOS architecture

5. The Palantir data model
The abstract Palantir data model is composed for two elements: the Entities

and the Entity Metrics. The entities represent the conceptual elements of the
systems that can contain information suitable to be requested. They are not
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required to be physical resources. For example, hosts, jobs or applications are
considered to be entities. Each entity has associated a set of metrics that contain
specific information. For instance the metric elapsed time is a metric that can
be associated to the entity job. Each entity type has a set of instantiations: for
example the entity host may the instantiations “host1.bsc.es”, “host2.bsc.es”
etc. The attributes for the entity are (see Figure 4):

Its name. That must be unique in the system (such as Job, predictor etc).

Its description. That contains a human readable description of the entity.

Its key. That, using the XML Schema technology, describes how this en-
tity is identified. For example the key for the host entity may be composed
by its hostname or by its IP address (or both).

Its namespaces. It contains a set of URIs (Uniform Resource Identifier)
identifying the semantic spaces to which the entity belongs.

Figure 4. Abstract Data Model

An entity may have associated a set of metrics; each metric also has a set of
predefined attributes:

Its name. That must be unique to the entities to which it is associated.

A human readable description of the information that it provides.

Its parameters. Using also the XML Schema technology defines the pa-
rameters that can be provided to Palantir when requiring its content to an
instantiation of a given entity. For example the entity Predictor requires
the job id as a parameter when querying for its metric JobRunTimePre-
diction.

The XML Schema that describes the format of information returned when
querying its content. In case that the metric contains a reference to another
entity instantiation this will indicated by the Boolean attribute IsRef.

The model presented until this point is the abstract model. However in the
systems where Palantir is installed this data model is defined using concrete
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Figure 5. Palantir Data Model example

entities (not the instantiations). For example the Figure 5 presents a possible
Palantir model that could be specified in a system where information about
users and its jobs is provided.

Different Palantir systems may be installed in different domains. Each of
these installations may have a different concrete model. The concrete model is
mainly designed taking into account to which information systems the Palantir
is providing access. When a new IS is added to an installation its concrete data
model may vary. If this new IS provides new information that it is not included
in any of the already defined entities the Palantir administrators can choose one
of the three following options:

Creating new entities that will provide information about the new con-
ceptual elements.

Extending the definition of an existing entity adding new metrics to it.
For example, in case that the new IS provides performance information
concerning the running jobs, the metric PerformanceIndicator could be
added to the entity job.

Extending the definition of an existing entity creating a sub entity. The
proposed model is a UML like model, and entities may inherit the defi-
nition of other entities.

However, this analysis will not always be required when a Palantir will be
installed in a particular architecture. There will be a set of predefined entities
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whom design will be based on a set of IS (Ganglia, NWS etc.) that will available
when building a concrete system. Furthermore, future versions may include
semi/automatic methods for derive this actions.

6. The Palantir system architecture
In this section we present the overview of the architecture that allows gath-

ering the information for each of the instantiation of the entities available in a
concrete installation of the system.

Figure 6 provides a general view of the system architecture. As can be
observed there are three top architectural components: at the top there are the
Palantir Access Points that allow the uniform access to the users/applications
to the system; the Palantir Gateways are the intermediate layers that control the
access to the information providers installed in each of the centers joined to the
system; and finally, the bottom components of the system are the information
modules. They are the responsible of gathering the required information to the
different IP/IS.

6.1 The access points
The first layer is integrated by the Palantir Access Points (AP). These com-

ponents provide a uniform view to the end-user/application of the whole in-
formation that is available in the system. They must know which centers are
available to provide information.

When the end-user/application carries out a query to the AP, it redirects it
to the appropriate Palantir Gateway or Gateways that are able to provide the
required information. An important question to address is how the AP knows to
which GW have to connect when the end-user/applications requires information
about a given entity. The system distinguishes between two kinds of entities:
persistent entities and the temporal entities.

The persistent entities are non-volatile entities that will remain available in
the system for a long time. Examples of this kind of entities are: host, cluster,
performance predictor, storage system etc. For them the database stores among
other data in which Gateway/Gateways its information is stored. For example
in Figure 6 the Palantir AP will know that the entity "job21@pcmas" can be
queried in the Gateway installed in the BSC Center.

The temporal entities are volatile entities or with a limited amount life time,
for example: jobs. The AP identifies the GWs where this information can be
gathered analyzing the entity key. If the key is in the composed form, a subset
of this key must identify a persistent entity that will be used to find out in which
GW the query has to be done. However, as not all the temporal entities will be
able to satisfy the above property, a temporary entity can be also identified by



212 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

a direct links. This directly points to which module/s the information can be
retrieved (such: “gw[id=‘X’]/module[id=‘MDS1’]/entity[id=‘job1’]”).

The management of this kind of keys should be transparent to the user. As will
be presented in the following section, the system provides a set of discovering
methods that allow to the clients to retrieve this kind of keys. In this cases the
user does not have be aware of what the key means.

The protocol used from the application to this access point is based on the
generic protocol presented in the following section. More important is that
client does not have to be aware to which information system the final queries
are done, abstracting it to the complexity of the underlying systems.

Figure 6. eNANOS and GRMS modules

6.2 The gateways
The main task of the gateway is choosing the appropriate module that will

process a given query. It stores a data base with all the entities that are available
on underlying modules. When entity information is required it searches in this
database where it can be retrieved. The mechanism used for decide to which
modules the information is gathered is exactly the same as the once presented
for Access Point.
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6.3 Information systems modules
Finally, at the bottom part of the architecture, the modules are responsible

of carry out the final queries to the information or monitoring systems that they
represent.

At this level, modules must know how the queries have to be done to the
systems. For each monitoring or information system that can be queried through
the Palantir, a module must be implemented.

6.4 An example: integrating two different job monitoring
approaches

Figure 6 shows two different modules that have been developed for accessing
the job monitoring information of two different systems [12]. The eNANOS
module integrates job information coming form different components of our
architecture [1]:

The eNANOS scheduler provides general information about all the jobs
that have been submitted on the local hosts.

The eNANOS Performance Monitor provides information regarding the
progress for the different processes that are running in each host: the
achieved MFLOPs, the load balance level etc.

The NANOS CPUManager provides information about how the different
jobs/process/thread are behaving on the resources.

The eNANOS Broker provides information about the jobs that have been
submitted to the Grid: stagein files, stageout files, resources etc.

When the eNANOS module receives a query about a certain job metric it
gathers the required information using the different APIs that the presented
components provide (such as PSInterface of the CPU Manager, or the getBal-
anceLevel of the Performance monitor).

On the other hand, the same Palantir architecture allows monitoring the jobs
that have been submitted to the GRMS broker [13]. The GRMS Palantir Module
access to the GRMS monitoring information using the interface GetJobPS that
returns a set of XML documents the monitoring information for a job that
has been submitted to the broker. Using XSLT the module transforms these
documents to the Palantir protocol format.

In this example, the end-user/application is able to accessing to the job moni-
toring information that comes from two different systems (with different mech-
anisms, different interfaces and different formats) using the standard format
and protocol proposed in Palantir.
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7. The Palantir protocol and interfaces
The API is divided in three main parts. The first one is a set of methods

that allows starting and ending communications between authorized compo-
nents and the meta-information system. The second set of methods allows
discovering which type of features (such as entities types, metrics and entities
instantiations) and methods are available. And finally, the third type of methods
allows gathering the metric values for the entities instantiations.

7.1 Connecting to the information system
These mechanisms allow the user to be authenticated against the system.

The accounting can be used if the underlying systems allow them. However,
the security object always will be used for carry out a secure connection. Two
main methods will be provided: the StartCommunication opens a secure con-
nection with the system; and the CloseCommunication closes the connection
and invalidates the security objects.

1 <AvailableEntities xmlns:xs=" ht tp: / /www.w3. org/2001/XMLSchema">
2 <!−− List of resources availables −−>
3 <Entity name="host">
4 <Description>This resource allows to carry out queries about the resource

host</ Description>
5 <key>
6 <xs:element name="host">
7 <xs:complexType>
8 <xs:choice>
9 <xs:element name=" ip" type=" xs:s tr ing " />

10 <xs:element name="hostname" type=" xs:s tr ing " minOccurs="0" />
11 </ xs:choice>
12 </ xs:complexType>
13 </ xs:element>
14 </ key>
15 </ Entity >
16 <Entity name="application">
17 <Description>This resource allows to carry out queries about the software

resource application</ Description>
18 <key>
19 <xs:element name="application">
20 <xs:complexType>
21 <xs:choice>
22 <xs:element name="name" type=" xs:s tr ing " />
23 <xs:element name="version" type=" xs:s tr ing " minOccurs="0" />
24 </ xs:choice>
25 </ xs:complexType>
26 </ xs:element>
27 </ key>
28 </ Entity >
29 </ AvailableEntities>

Source 1: GetResourceInstantiation
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7.2 Discovering the available features
The meta-information system, as it is providing a wide range of information,

and it is using several underlying systems, provides ways to discover how to
query it and what information can be gathered. Below are presented all the
methods that have been defined for provide these functionalities.

GetEntitiesTypes: Returns the list of the types of entities available on the
system. An example of a returned XML is shown in the Source 1. User
can filter the information to be retrieved, for example only entities types
that concerns computational resources and forecasting entities.

GetEntityInstantiation: Returns the list of instances of a provided entity
type. For instance, user may know the list of entities of type "host".
As the GetEntitiesTypes method, the Palantir client can specify some
parameters for filter the instantiations to be retrieved.

GetMetricInfo: Returns information about a particular metric of a partic-
ular entity or resource. For instance, calling getMetricInfo(“application”,
“prediction job memory usage”) we could obtain the XML document
presented in Source 2.

1 <Metric>
2 <Name>prediction job memory usage</Name>
3 <Description>Returns a prediction of the memory that a given application

will use i f executed .
4 </ Description>
5 <Parameters>
6 <xs:element name="Parameters">
7 <xs:complexType>
8 <xs:sequence>
9 <xs:element name="AppName" />

10 <xs:element name="Host" />
11 <xs:element name="User" />
12 <!−− ETCETERA−−>
13 </ xs:sequence>
14 </ xs:complexType>
15 </ xs:element>
16 </ Parameters>
17 <!−− ETCETERA−−>
18 </ F i l t e r s>
19 <Notifications>
20 <Periodic available="no" />
21 <Punctual available="yes" />
22 </ Notifications>
23 </ Metric>

Source 2: Sample of output for the GetMetricInfo
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7.3 Getting the entity information
The client can retrieve the metrics values of a given entity instantiation using

the GetMetricValue functionality. The input for this method is basically a set of
entity instantiations identifiers plus all the metrics that the client wants to know
about each of them. Each metric can be parameterized. For instance the metric
JobsList for the entity Scheduler can be parameterized as shown in Source 3.

1 <Parameters>
2 <JobsMatching >
3 <FilterByDate>
4 <BetweenDates>
5 <StartDate>1136208170544</ StartDate>
6 <EndDate>1136380970544</EndDate>
7 </ BetweenDates>
8 </ FilterByDate>
9 <FilterByState>

10 <State>FAILED</ State>
11 <State>SUSPENDED</ State>
12 </ FilterByState>
13 <SubmissionDate>
14 <BetweenDates>
15 <StartDate>1138886570544</ StartDate>
16 <EndDate>1136380970544</EndDate>
17 </ BetweenDates>
18 </ SubmissionDate>
19 </ JobsMatching>
20 </ Parameters>

Source 3: Parameters for the metric JobLists

8. Conclusions
In this paper we have discussed the need of a new Grid component that

has to provide a uniform access to the whole Grid information. The current
Grid architectures are composed by different types of information systems that
provide: different access methodology, different format information and se-
mantics. We can not expect users neither applications to know exactly how
each of this IP has to be queried. This situation result in unsustainable and
non maintainable Grid architectures, where all the information consumers are
highly dependant to the changes that the different IP may have. Furthermore,
adding new information systems can result in important source redefinitions in
the already deployed consumers or, in the worst, cases in a redesign of their
internals. This problem will become dramatic if the number of Grid IP and
consumer components increases as it is expected.

We also have presented the problematic providing several examples where
this component would help to simplify the overall Grid infrastructure and the
relations among the different information producers/consumers, and it would
make the system more extensible.
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As a solution proposal, we have presented the Grid Palantir meta-information
systems. We have described how it uniforms the access to different monitoring
and information systems and how its functionalities are provided and imple-
mented. It has been shown how it abstracts the access to different data providers,
and it has been demonstrated to be useful in situations where a very wide range
of information is provided. A real use cases of how this system has been inte-
grated successfully in some architectures have been described.
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Sébastien Monnet
IRISA/INRIA, Rennes Cedex, France
sebastien.monnet@irisa.fr

Domenico Talia
DEIS, University of Calabria, Rende (CS), Italy
talia@deis.unical.it

Paolo Trunfio
DEIS, University of Calabria, Rende (CS), Italy
trunfio@deis.unical.it

Abstract Computational Grids are powerful platforms gathering computational power and
storage space from thousands of geographically distributed resources. The ap-
plications running on such platforms need to efficiently and reliably access the
various and heterogeneous distributed resources they offer. This can be achieved
by using metadata information describing all available resources. It is therefore
crucial to provide efficient metadata management architectures and frameworks.
In this paper we describe the design of a Grid metadata management service.
We focus on a particular use case: the Knowledge Grid architecture which pro-
vides high-level Grid services for distributed knowledge discovery applications.
Taking advantage of an existing Grid data-sharing service, namely JuxMem,
the proposed solution lies at the border between peer-to-peer systems and Web
services.
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1. Introduction
Computational Grids are powerful platforms gathering computational power

and storage space from thousands of resources geographically distributed in
several sites. These platforms are large-scale, heterogeneous, geographically
distributed and dynamic architectures. Furthermore they contain many types
of resources such as software tools, data sources, specific hardware, etc. These
resources are spread over the whole platform. Therefore, it is crucial to pro-
vide a mean for the applications running on Grids to localize and access the
available resources in such large-scale, heterogeneous, dynamic, distributed
environment.

Each Grid resource can be described by a metadata item (eg., an XML doc-
ument). Such a metadata document may contain the 1) the description of a
particular resource, 2) its localization and 3) information on the resource usage
(eg., command line options of a software tool, format of a data source, protocol
used to access a particular node, etc.). Thus, given a resource metadata, it is
possible to access the resource. All the metadata items, describing the whole
set of resources available in a given Grid have to be managed in an efficient and
reliable way especially in large-scale Grids.

In this paper we propose a software architecture of a scalable Grid metadata
management service. We focus on a particular use case: metadata management
for the Knowledge Grid [6]. The Knowledge Grid is a service-oriented software
distributed framework that aims to offer high-level Grid services for knowledge
discovery applications running on computational Grids. The Knowledge Grid
services are built on top of existing, low-level Grid services such as GRAM [11],
GridFTP [1] or MDS [10].

Within the Knowledge Grid architecture, metadata provides information
about how an object (either a data source or an algorithm) can be accessed.
It consists of information on its actual location and on its format (for a data
source) or its usage (for an algorithm).

As metadata is actually stored as pieces of data (eg., XML files), they may
be treated as such. We take advantage of the good properties exhibited by
an already existing Grid data-sharing service, JuxMem [2, 4], to store and
retrieve metadata. We then build a distributed and replicated hierarchical index
of available metadata.

In the next section we briefly present the architecture of the Knowledge Grid
and focus on its metadata management needs. Section 3 presents the JuxMem

Grid data-sharing service that we use to reliably store and retrieve both resource
metadata and the distributed replicated index. Section 4 describes our archi-
tecture for a metadata management Grid service tailored for the Knowledge
Grid and based on JuxMem. Finally, Section 5 presents ongoing work and
concludes this paper.
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2. The Knowledge Grid
2.1 Knowledge discovery in Grids

Nowadays, big companies have to deal with daily generated large amounts
of data. They need tools to both store this information and retrieve knowledge
from it. Computational Grids [13] offering high computational power and
large storage resources can be used to store and process large amounts of data.
Furthermore their geographically distributed nature fits well with the companies
architecture. Indeed companies data sources and computational power may be
spread all over the world.

However, performing knowledge discovery over such a distributed and of-
ten heterogeneous architecture, using data sources and data mining algorithms
spread over thousands of nodes is not a trivial task. Building and running a
distributed knowledge discovery application on a Grid requires high-level ser-
vices. Data sources to be mined have to be located, furthermore their format has
to be discovered somehow (they could be relational databases, text files, etc.).
As well, data mining algorithms and software tools have to be localized and
their usage has to be known. Then the computations (data mining algorithms
running over data sources) have to be scheduled over available Grid nodes. A
knowledge discovery application can be complex, consisting in numerous se-
quential or parallel data mining algorithms working on identical or different
data sources. Some data mining algorithm may be run with the data produced
by another data mining algorithm, leading to task dependencies, etc.

The Knowledge Grid provides high-level services and a user-friendly inter-
face VEGA [8] that allows a user to easily describe a distributed knowledge
discovery application, it then takes care of locating the resources (data sources,
algorithms, computational nodes), scheduling tasks, and executing the applica-
tion. Within the Knowledge Grid, the application designer only has to describe
an abstract execution plan, with VEGA, he can even do it graphically. An ab-
stract execution plan defines at high level the algorithms to be executed and the
data sources to be mined. The Knowledge Grid services (called K-Grid services
for short thereafter) are responsible to locate the resources and services and in-
stantiate the execution plan which becomes an instantiated execution plan like
the one presented in Figure 1.

An instantiated execution plan contains a set of tasks -with assigned Grid
resources- to be done (data transfers and computations). It is executed by the
K-Grid services and it may be refined as resources may become available or
unavailable in a Grid.
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<ExecutionPlan type="instantiated">
 <Task label="task1">
  <Program href="minos.cs.icar.cnr.it/software/DB2Extractor.xml"
           title="DB2Extractor on minos.cs.icar.cnr.it"/>
  <Input href="minos.cs.icar.cnr.it/data/car-imports_db2.xml"
         title="car-imports.db2 on minos.cs.icar.cnr.it"/>
  <Output href="minos.cs.icar.cnr.it/data/imports-85c_db2.xml"
          title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
 </Task>
 <Task label="check1">
  <ResourceCheck method="soft"/>
 </Task> 
 <Task label="task2">
  <Program href="minos.cs.icar.cnr.it/software/GridFTP.xml"
           title="GridFTP on minos.cs.icar.cnr.it"/>
  <Input href="minos.cs.icar.cnr.it/data/imports-85c_db2.xml"
         title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
  <Output href="abstract_host1/data/imports-85c_db2.xml"
          title="imports-85c.db2 on abstract_host1"/>
 </Task> 
...

 <Task label="task6">
  <Program href="abstract_host1/software/autoclass3-3-3.xml"
           title="autoclass on abstract_host1"/>
  <Input href="abstract_host1/data/imports-85c_db2.xml"
         title="imports-85c.db2 on abstract_host1"/>
  <Output href="abstract_host1/data/classes.xml"
          title="classes on abstract_host1"/>
 </Task> 
...

 <TaskLink ep:from="task1" ep:to="check1"/>
 <TaskLink ep:from="check1" ep:to="task2"/>
 <TaskLink ep:from="task2" ep:to="task3"/>
 ...
 <TaskLink ep:from="task5" ep:to="task6"/>
 ... 
 <ResourceInstantiation abstractResource="abstract_host1">
   <candidateResource>icarus.cs.icar.cnr.it</candidateResource>
   <candidateResource>telesio.cs.icar.cnr.it</candidateResource>
 </ResourceInstantiation> 
</ExecutionPlan>

Figure 1. A sample instantiated execution plan (from [14]).

2.2 The Knowledge Grid architecture
The K-Grid services are organized in a two-layer software architecture: 1)

the High-level K-Grid layer and 2) the Core-level K-Grid layer. In its current
implementation, the different services composing the Knowledge Grid are Grid
services interacting by using the WSRF [9] standard. The organization of the
K-Grid services is described by Figure 2. The High-level K-Grid layer includes
services to compose, validate and execute distributed knowledge discovery ap-
plications. The main services of the High-level K-Grid services are:

The Data Access Service (DAS), responsible for data sources and mining
results publication and search.

The Tools and Algorithms Access Service (TAAS), responsible for data
mining and visualization tools and algorithms publication and search.

The Execution Plan Management Service (EPMS), allowing to de-
scribe a distributed knowledge discovery application by building an ex-
ecution graph with constraints on resources. It generates an abstract
execution plan (resources are not know yet).
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The Results Presentation Service (RPS), offering services for knowl-
edge discovery results presentation;

The services exhibited by the Core K-Grid layer are:

The Knowledge Discovery Service (KDS), responsible for metadata
management. Every resource (nodes, algorithms and tools, data sources
and mining results) of the Knowledge Grid is described by a metadata
item. In the Knowledge Grid, resource metadata is a XML document
stored in a Knowledge Metadata Repository (KMR).

The Resource Allocation and Execution Management Service
(RAEMS), responsible to instantiate an abstract execution plan. It uses
the KDS service to find resources satisfying the constraints imposed by
the abstract execution plan. It is also responsible for the application
execution management.

DAS TAAS EPMS RPS

RAEMS

Knowledge discovery

Data access

Service access service

Execution plan

management service

Results

presentation service

service exec. manag. service

Resources alloc. and

Core−level K−Grid layer

KDS

KBR

KMR KEPR

Tools and algorithms

Hight−level K−Grid layer

Figure 2. The Knowledge Grid software architecture.

2.3 Current KDS design and limitations
The Knowledge Directory Service (KDS) is responsible for handling meta-

data describing Knowledge Grid resources. A sample metadata is presented by
Figure 3. Such resources include hosts, data repositories, tools and algorithms
used to extract, analyze, and manipulate data, execution plans, and knowledge
models obtained as result of mining processes.

The metadata information is represented by XML documents stored in a
component called Knowledge Metadata Repository (KMR). The functionalities
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<DataMiningSoftware name="AutoClass">
  <Description> 
    <KindOfData>flat file</KindOfData>
    <KindOfKnowledge>clusters</KindOfKnowledge>
    <KindOfTecnique>statistics</KindOfTecnique>
    <DrivingMethod>autonomous knowledge miner</DrivingMethod>
  </Description> 
  <Usage> 
    ... 
    <Syntax> 
      <Arg description="executable" type="required" value="/usr/autoclass/autoclass">
        <Arg description="make a classification" type="alternative" value="-search">
          <Arg description="a .db2 file" type="required"/>
          <Arg description="a .hd2 file" type="required"/>
          <Arg description="a .model file" type="required"/>
          <Arg description="a .s-params file" type="required"/>
        </Arg>
        <Arg description="create a report" type="alternative" value="-reports">
          <Arg description="a .results-bin file" type="required"/>
          ...
        </Arg>
        ... 
      </Arg> 
    </Syntax> 
    <Hostname>icarus.cs.icar.cnr.it</Hostname>
    <ManualPath>/usr/autoclass/read-me.text</ManualPath>
    <DocumentationURL>http://ic-www.arc.nasa.gov/ic/projects/...</DocumentationURL>
    ... 
  </Usage> 
</DataMiningSoftware>

Figure 3. An extract from an XML metadata sample for the AutoClass software (presented in
[14]).

of the KDS are mostly used by DAS and TAAS services while publishing and
searching for datasets and tools to be used in a KDD application. DAS and
TAAS services always interact with a local instance of the KDS, which in turn
may invoke one or more other remote KDS instances.

The KDS exports three main operations:
- publishResource, used to publish metadata related to a given resource

into the KMR;
- searchResource, for locating resources that match some given search

criteria;
- retrieveMetadata, invoked to retrieve metadata associated to a given

resource identified by a provided KDS URL.
It should be noted that when a publishResource is performed, only an

interaction between a DAS/TAAS service and the local KDS is needed, be-
cause each KMR instance stores metadata about resources available on the
same Grid node on which the KMR itself is hosted. On the contrary, when
a searchResource is invoked, the related query is first dispatched from the
DAS/TAAS to the co-located KDS service, which then answers by checking
the local KMR, and in turn forwards the same query to remote KDSs with the
aim of finding more matches.

The retrieveMetadata receives a KDS URL returned by a previous invo-
cation of the searchResource operation, and uses it to contact the remote KDS
on which the resource is available to retrieve the associated metadata document.
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It appears clear, thus, that the searchResource is the most complex activity
performed by the KDS, because it involves interactions and coordination with
remote instances of the same service. On the other hand, it should be mentioned
that the architecture of the Knowledge Grid does not prescribe any particular
mode of interaction and/or protocol between the different KDS instances.

The current implementation, for instance, is adopting to such purpose one
of the simplest strategies: the query forwarding is performed by contacting
concurrently all of the known remote KDS instances (avoiding loops).

In this paper we propose a new KDS design based on a shared distributed
index handled by a Grid data-sharing service and a peer-to-peer technique.
This is useful for reducing the number of remote KDS instances contacted
when forwarding a search query.

Resources metadata like the one presented by Figure 3 should be stored in
a persistent and fault tolerant storage. Furthermore, they may be shared by
multiple applications, and sometimes updated. Therefore, it is necessary to
maintain the consistency between the different copies that may exist in the
Grid. Thus we use a data-sharing service, JuxMem, which offers transparent
access to persistent mutable data, to store the XML files corresponding to pieces
of metadata.

3. JuxMem: a Grid data-sharing service
In this section we present the JuxMem Grid data-sharing service used in

the design of the metadata management Grid service.

3.1 A hierarchical architecture
From the metadata management Grid service perspective, JuxMem is a

service providing transparent access to persistent, mutable, shared data. When
allocating memory, a client has to specify in how many sites1 the data should
be replicated, and on how many nodes in each site. This results into the in-
stantiation of a set of data replicas, associated to a group of peers called data
group. Usually each node runs one single peer. The allocation primitive returns
a global data-ID, which can be used by the other nodes to identify existing data.
To obtain read and/or write access to a data block, the clients only need to use
this data-ID.

The data group is hierarchically organized, as illustrated on Figure 4: the
Global Data Group (GDG) gathers all provider nodes holding a replica of the
same piece of data. These nodes can be distributed in different sites, thereby

1A site is a set of clustered nodes, it can be a physical cluster within a cluster federation, or close from a
latency viewpoint.
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increasing the data availability if faults occur. The GDG is divided into Local
Data Groups (LDG), which correspond to data copies located in a same site.

In order to access a piece of data, a client has to be attached to a specific
LDG (to “map” the data). Then, when the client performs the read/write and
synchronization operations, the consistency protocol layer manages data syn-
chronization and data transmission between clients, LDGs and GDG, within
the strict respect of the consistency model.

GDG

Site A

LDG LDG

Site B

Figure 4. JuxMem: a hierarchical architecture.

3.2 JuxMem software architecture
The JuxMem Grid service is composed of a set of layers presented in

Figure 5. The lower layer Juk is the JuxMem kernel. It relies on JXTA [15] to
offer to the uppers layers publish/subscribe operations, efficient communication
and storage facilities. Every node involved or using JuxMem is therefore
managed in a peer-to-peer way using JXTA. JXTA is is a set of protocols
allowing nodes (Grid nodes, PDA, etc.) to communicate and collaborate in
a P2P manner. The implementations of these protocols provide the ability to
obtain efficient communications on Grids [5].

Above Juk, a fault-tolerance layer is responsible for hierarchical data repli-
cation. It offers the concept of Self-Organizing Group (SOG), a SOG is a
replication group that is able to adapt itself in case of dynamic changes (by
creating new replicas or removing old ones), this provides the ability to keep
fault tolerance guarantees even in presence of failures.

The upper layer is responsible for data consistency management, it serves
data access requests, manages locks and maintain pending requests lists.

A multi-protocol architecture. The layers presented above are built as inter-
changeable software modules. Therefore, it is possible for each data item stored
by the Grid data-sharing service to specify a particular consistency protocol or
a particular SOG implementation.
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JuxMem Kernel

Consistency management layer

Fault tolerance layer
Self organizing groups (SOG)

Juk

Figure 5. JuxMem layered software architecture.

The JuxMem service can not be used in its current design to manage meta-
data, but additional features must be provided. Data stored in JuxMem is
accessible (localizable) only by using its associated data-ID. Metadata items
have to be localizable using only names and attributes. The following sec-
tion presents our approach to build a metadata management service using the
JuxMem data-sharing service.

4. A Grid metadata management service
From the Knowledge Grid viewpoint, the Grid metadata management service

consists of a particular design and implementation for the KDS service and the
KMR repository. The service presented below serves requests from the TAAS
and the DAS High-level K-Grid services but also from the RAEMS Core K-Grid
service (see Figure 2).

Our approach relies on the use of the JuxMem Grid data-sharing service
prototype presented in the previous section. Metadata items are stored within
the Grid data-sharing service.

4.1 Metadata storage and retrieval
Requirements. Resources metadata should remain available in the Grid.
Therefore they should be stored in a fault tolerant and persistent manner. This
may provide the ability to access metadata information in spite of failures and
disconnections. Furthermore, some metadata should be updatable. In the
Knowledge Grid use case, a piece of metadata may describe the result of a
knowledge discovery task, this result may be refined later which leads to meta-
data modifications. If a resource location is changing, it should also be reflected
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by updating the associated metadata. Finally, metadata has to be localizable by
providing name, attributes and constraints upon the described resource.

Storing metadata in a Grid data-sharing service. To achieve high avail-
ability of metadata despite failures we store them in the JuxMem Grid data-
sharing service. Each metadata item describing a resource is though replicated
and associated to one unique ID as described in Section 3. This ID can then be
used to retrieve metadata information stored in the Grid data-sharing service.
Availability and consistency (eg., in case of concurrent updates) is then also
managed by the Grid data-sharing service. The metadata items that will not
be updated (e.g. describing a large data source that will not be updated and
will not be moved) can take advantage of JuxMem multi-protocol feature by
using a very simple and efficient consistency protocol without synchronization
operations. Thus, JuxMem is used as a fault-tolerant, distributed and shared
KMR (see Section 2) and JuxMem’s data-IDs are used as KDS URLs.

Locality. Metadata information is strongly linked with the resource it de-
scribes. Therefore if the resource becomes unavailable, its corresponding
metadata information would become useless (it can also become misleading).
Therefore, regarding JuxMem hierarchical architecture, metadata information
should be stored within the site containing the resource it describes (i.e. over
one unique JuxMem LDG). If all the nodes of the site fail (due to a power
failure in a computer room for instance) the resources metadata of this site be-
come unavailable but it is also the case of the described resources. Thus, we
choose to store metadata information in the described resources’ site using only
one JuxMem LDG per metadata item. However notice that LDG are reliable
self-organizing groups, ie. the failure of a node does not lead to the loss of
metadata items.

4.2 Fault-tolerant distributed indexes
While looking for metadata information using the searchResource opera-

tion, applications2 can provide information like a name (eg., a data source name
“clientdata1” or an algorithm name “J48”) or a set of attributes and constraints
as the one in the “Description” section of the metadata presented in Figure 3.
An accurate description of the kind of requests the KDS service should be able
to serve is given in [14].

Therefore it is necessary to have a mean to find a metadata identifier (which
then permit to retrieve the metadata information itself) using names and at-
tributes that represent the resource described by the metadata.

2In our current use case the applications are the DAS, TAAS and RAEMS K-Grid services.
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Distributed indexes. Usual approaches rely on the use of a centralized
indexing system. It can be either a relational database like MySQL [17] or a
LDAP [12] server (used in previous Knowledge Grid implementations). We use
distributed indexes: in each site composing the Grid, we maintain a site index
of the published resources metadata within this site. This site index contains
tuples consisting of the resource name, attributes (as a byte vector) and the
resource metadata identifier (its JuxMem data-ID).

Fault tolerance. There again we rely on the JuxMem data-sharing ser-
vice: the site indexes are data item that can be stored in JuxMem. Therefore
they are automatically replicated for fault tolerance. Notice that a site index
only contains information of its own site, furthermore it does not contain the
whole metadata information but only metadata item names and some relevant
attributes. Thus, a site index size remains limited.

Index sharing. The WSRF KDS instances serving publishResource and
searchResource requests are clients of the JuxMem service. In each site
it is possible to have multiple KDS services having mapped the site’s index
as illustrated in Figure 6. The KDS are responsible for parsing the index,
finding the metadata identifier, fetching the metadata (using the identifier) and
sending back the retrieved metadata to the requester (either DAS, TAAS or
RAEMS). These tasks are achieved by interacting with the JuxMem service.
It is important to notice that the site index is a data item stored by JuxMem and
mapped by the multiple KDS: the consistency of the shared index is ensured by
the grid data-sharing service while new publications occur.

The shared site indexes allows KDS instances to retrieve locally (on their
node) KDS URLs of metadata describing resources spread over their site nodes.

4.3 Big picture
4.3.1 Metadata publication. Metadata publications done by the DAS
and the TAAS are made through the publishResource operation provided by
KDS. When a KDS receives such a request:

1 It stores the corresponding XML file within JuxMem,

2 locks the index to ensure no concurrent publish occurs,

3 updates it, adding the new resource metadata index entry (attributes and
JuxMem data-ID of the XML file).

The KDS then releases the lock upon the index. To allow the other KDS to
continue serving search requests while an update occurs, we use a particular
consistency protocol allowing read operations concurrent to a write operation.
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RPS

(JuxMem client)
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JuxMem data−sharing service
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(distributed and replicated KMR)
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Figure 6. In each site KDS interact with the JuxMem service to access 1) the local index, 2)
the KDS list, and 3) the metadata information itself.

Such a protocol is available in JuxMem, it is described and evaluated in details
in [3]. Note that the publication of a site resource affects only the index stored
in this site and used by the local KDSs, furthermore resources metadata are
also stored on intra-site JuxMem providers (in LDGs). Therefore a publish
operation does not imply inter-site communications.

4.3.2 Metadata search. When K-Grid services need to search a partic-
ular resource metadata, they request the KDS running on the same node or a
randomly chosen remote KDS within their own site3. The KDS receiving such
a request search in its mapped (in its local memory) site index. If the resource
is found, it gets the corresponding XML file using the data-ID stored in the site
index. In this case the resource is available within the same site. If a corre-
sponding resource can not be found in the site index, the KDS forwards it to
one randomly chosen KDS in each other site involved in the Grid using JXTA
peer-to-peer communication layers as illustrated by Figure 7. To achieve this, a

3A round robin policy could also be used.



P2P Metadata Management for Knowledge Discovery Applications in Grids 231

partial list of KDS instances is stored and maintained within the JuxMem Grid
data-sharing service. This list is replicated hierarchically in the whole platform
using the GDG/LDG hierarchy presented in Section 3.

KDS

JuxMem data−sharing service
(distributed and replicated KMR)

Replicated local
index 1

Replicated local
index 2

Replicated
XML files

Replicated

XML files

Replicated KDS list

Site BSite A

KDS

Node B1

KDS

Node B2

KDS

Node B3

KDS
Node A2

Request forwarding among sites

Node A1

Figure 7. Among sites, KDS cooperate using the hierarchically replicated KDS list.

At initialization, a KDS maps its site index and the KDS list, it can then
add itself into this list. If a KDS does not answer to a request (either publish
or search), it is removed from this list. The KDS list is not expected to be
frequently updated as Grid nodes are assumed more stable than peers in peer-
to-peer systems.

4.4 Technical concerns
From a technical view point our solution implies integrating the JuxMem

and the Knowledge Grid research prototypes. JuxMem entities are managed
in a peer-to-peer manner, using Sun Microsystems JXTA protocols, while the
entities involved in the Knowledge Grid service use the WSRF Grid standard.

The junction between the two different sets of protocols is done by the new
KDS implementation: KDS instances are part of both the JuxMem platform,
as clients of the JuxMem Grid service, and they serve WSRF requests from
the Knowledge Grid services (publishResource and searchResource).

The KDSs are also responsible to parse the distributed index. The distributed
nature of the index implies a cooperation between the KDS instances distributed
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in different sites all over the Grid. This cooperation is made in a peer-to-peer
manner, taking advantage of the Grid data-sharing service to store, manage and
share a neighbor list (the KDS list).

5. Conclusions
Metadata data management in large scale, heterogeneous, geographically

distributed and dynamic architectures such as computational Grids is an impor-
tant problem. Providing an efficient and reliable metadata management service
allows applications to easily access heterogeneous resources spread over thou-
sands of nodes.

The solution we presented in this paper takes advantage of already exist-
ing work in Grids. By integrating the JuxMem Grid data-sharing service in
the design of a metadata management service for the Knowledge Grid, XML
metadata files are stored on a fault tolerant and consistent support, and are kept
close to the resources they describe. The proposed two-level index hierarchy
allows the applications to get resources located in their own site if they exist or
in remote ones otherwise, enhancing locality.

The integration of the two research prototypes is in progress, and we plan to
evaluate this solution on a real Grid platform such as Grid’5000 [16, 7]. The
format of the distributed index should then be further investigated, using bina-
ries trees for instance. The peer-to-peer cooperation between KDS instances
should also be enhanced, for instance by selecting several KDSs for inter-site
cooperation.
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general scheduling approaches. Based on the related work and on our own ex-
perience, we propose several novel taxonomies of the multi-criteria workflow
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1. Introduction
Scheduling of computational tasks on the Grid is a complex optimization

problem which may require different scheduling criteria to be considered. Usu-
ally, execution time is applied as the most important criterion. In some other
cases, the global efficiency (job throughput) should be maximized by the Grid
system. In market models (especially in business Grids), economic cost opti-
mization is also considered. Other possible criteria include quality of results,
reliability of service, etc. In a multi-dimensional parameter space, it is in gen-
eral not possible to find a solution that is “best” with respect to all the metrics at
the same time. There are several existing approaches to the problem of multi-
criteria workflow scheduling on the Grid, most of them addressing two specific
criteria (usually execution time and economic cost), by applying some specific
approaches invented for specific cases. Our goal is to analyze the general prob-
lem of Grid workflow scheduling, by discovering regularities and irregularities
between different problem variants. We aim at providing a study which can
be used as a basis to move towards a scheduling approach addressing differ-
ent problem classes for multiple scheduling criteria. The rest of the paper is
organized as follows. In Section 2, we formally describe the problem which
we want to address. Section 3 provides our contribution to the state of the
art. We introduce several taxonomies of the workflow scheduling problem for
different aspects, considering both different problem variants and different ap-
proaches used to solve the problem. At the end of the section, we summarize
the performed case study, by classifying several existing workflow scheduling
approaches according to the taxonomies introduced previously. Finally, Section
5 concludes the paper and provides a short roadmap for the future work.

2. Grid workflow scheduling problem
We define Grid workflow scheduling as the problem of assigning different

Grid services to different workflow tasks. Every workflow is a directed graph
(digraph) w ∈ W, w = (V, E) consisting of a set of nodes V and a set of edges
E , where nodes and edges represent tasks τ ∈ T and data transfers dt ∈ D (as
we explain in Section 3.5, the mapping between the sets V , E , and the sets T ,
D can differ, depending on the current workflow model). In some workflow
representations applied in the related work cited by us, workflow elements may
have special semantics that defines complex workflow constructs (loops, parallel
loops, if/switch conditions). Workflows expressed in such formalisms (e.g.,
Petri Nets [26], BPEL [47], AGWL [23]) can be systematically reduced during
the runtime to simple Directed Acyclic Graphs (DAG), for instance by means
of loop unrolling and by predicting and evaluating the conditions [35]. In case
of any full-ahead workflow scheduling approach, such conversion has to be
performed globally for the whole workflow each time when the scheduling is
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triggered. The set S contains all the services that are available for scheduling in
the Grid and that implement different workflow tasks. In order to run a workflow,
every task of the workflow has to be mapped to a service that implements the
task. For every task τi ∈ T , there is a set Si = {si1, ..., sipi} ⊂ S of the
services which implement the task τi, where pi may differ for different i. A
schedule is defined as a function schedw : T 	→ S, where schedw assigns to
each task τi ∈ T a service s ∈ Si, creating a complete schedule (mapping) of the
workflow w. Set SC contains all possible schedules for all workflows w ∈ W .
The cost model for workflows is described by n multiple scheduling criteria
Ci, 1 ≤ i ≤ n, n ∈ N

+, for instance by execution time, economic cost, and
quality of results. The partial cost functions costi : S 	→ R, 1 ≤ i ≤ n, defined
for each scheduling criterion Ci, assign to each service sj ∈ S its partial cost cj

i
(e.g., “execution time of 5 minutes”, “economic cost of 5$”, “quality of results
100%”). In the remainder of this paper, we will sometimes refer to the cost of
a service s ∈ S which is mapped to a task τ ∈ T (i.e., where schedw(τ) = s)
as the cost of the task τ . Similarly to the partial cost functions, the total cost
functions costtot

i : W × SC 	→ R, 1 ≤ i ≤ n assign to a workflow w ∈ W
scheduled by schedw ∈ SC its total costs ctot

i , calculated based on the partial
costs of the services mapped to the workflow tasks. The optimization goal is to
find a schedule schedw with the best possible total costs ctot

i , 1 ≤ i ≤ n. As
we describe in Section 3.2, the total costs can be evaluated in different ways.

3. Taxonomies in workflow Grid scheduling
When analyzing the problem of workflow scheduling, several important

facets (e.g., resource model, criteria model) of the problem have to be con-
sidered, as they may strongly influence the decision as to which scheduling ap-
proach is most appropriate in the given case. Each facet describes the scheduling
problem from a different perspective. In this section, we will analyze in detail
5 different facets of the problem:

scheduling process

scheduling criteria

resource model

task model

workflow model
For every facet, we propose a certain taxonomy which classifies different
scheduling approaches into different possible classes. The classes are distin-
guished either with respect to different variants of the scheduling problem (e.g.,
multiple workflows, user-oriented scheduling), or with respect to the way the
problem is approached (e.g., full-ahead planning, advance reservation based).
We describe the classes using the RDF notation subject-predicate-object, which
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we extend in some cases to distinguish between different sub-classes of the prob-
lem. The proposed taxonomies can by no means be considered to be exhaus-
tive, as our attempt is to create a model only for a certain subset of the general
workflow scheduling problem (i.e., for the multi-criteria workflow scheduling
on the Grid). We illustrate the derived taxonomies by providing examples of
approaches for different classes, which partially come from the related work.
Some of those examples are taken from [20], which provides a more complete
analysis of the scheduling problem on the Grid.

3.1 Taxonomy of scheduling process
Different classes of Grid workflow scheduling can be distinguished with

respect to different properties of the scheduling process (see Fig. 1). In this
section, we will analyze both the information processed by the scheduler, and
the way in which this information is being processed.

Figure 1. Taxonomy of workflow scheduling process

Criteria multiplicity This classification is essential from the point of view of
the current work. Multiple criteria make the scheduling much more difficult,
as they represent multiple and often contradicting optimization goals which
require multi-objective scheduling techniques. From this point of view, the
scheduling processes can be divided into two classes:

Single criterion. The optimization is done for one criterion only (usually,
for execution time).
Multiple criteria. The scheduler tries to optimize multiple scheduling
criteria.

There exist several workflow scheduling approaches which consider more than
one criterion (e.g., [21, 59, 57, 58, 45, 8, 44]), and many of them consider the
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trade-off between execution time and economic cost. Vienna Grid Environment
[8] proposes a scheduling approach for multiple criteria (Quality of Service
parameters), usually for execution time and economic cost. It applies a general
multi-criteria scheduling approach, by using an optimization technique based
on integer programming [43] to optimize a weighted goal function combining
different QoS parameters.

Some other criteria are the main focus for the Grid-wide optimization (see
Section 3.2) and for the pipelined workflows (see Section 3.5). In Instant Grid
[27], a simple resource ranking model based on the number of CPUs and the
last known load is created dynamically, in order to optimize the profit of the
Grid. In [45], the scheduling of pipelined workflows is optimized with respect
to the throughput and the latency of workflow execution.

Workflow multiplicity The optimization process performed by a workflow
scheduler usually considers a single workflow only, but it can also attempt to
optimize the execution of multiple workflows at a time. Therefore, we can
distinguish the following two classes of workflow scheduling processes:

Single workflow. The execution of a single workflow is optimized within
a single scheduling process.
Multiple workflows. The execution of multiple workflows can be opti-
mized within a single scheduling process.

Only few existing scheduling approaches can optimize the execution of more
than one workflow at a time. The work presented in [63] distinguishes three dif-
ferent approaches to the problem, the first one based on a sequential scheduling
of multiple graphs (DAGs), the second one which incorporates also backfilling
to fill gaps in the schedule, and the third one based on an initial merging of mul-
tiple DAGs into a single DAG. The paper concentrates on the third approach,
and distinguishes four different merging schemes. It also proposes an approach
to increase fairness of scheduling, by trying to equalize the slowdown of dif-
ferent DAGs being scheduled (the slowdown is defined as the difference in the
expected execution time for the same DAG when scheduled together with other
workflows and when scheduled alone).

Dynamism Workflow scheduling is a process which prepares workflows for
an actual execution, therefore scheduling and execution should be considered
together, and the time relation between them may differ for different scheduling
approaches. In [18], three different types of workflow scheduling are distin-
guished: full-plan-ahead, in-time local scheduling, and in-time global schedul-
ing. The first approach is fully static, as it schedules the whole workflow before
the actual execution starts. On the other extreme, the second approach can be
considered as dynamic, as tasks are scheduled dynamically, only when they are
going to be executed. The first approach combines the two former approaches
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by performing full-ahead planning every time a new scheduling decision needs
to be made. Based on this classification, we distinguish the following three
classes of scheduling processes:

Just-in-time scheduling (in-time local scheduling). The scheduling deci-
sion for an individual task is postponed as long as possible, and performed
before the task execution starts (fully dynamic approach).
Full-ahead planning (full-plan-ahead). The whole workflow is scheduled
before its execution starts (fully static approach).
Hybrid. The scheduling approach combines the two aforementioned
approaches.

Just-in-time scheduling is represented by many simple scheduling heuristics
like Min-min, Max-min, Suffrage, and XSuffrage. These approaches are also
applied to schedule parameter sweep workflows on the Grid [13]. Two typical
example approaches which fall into the second class are presented in [42] and
[57]. In Vienna Grid Environment [8], both a full ahead scheduling approach
and a just-in-time scheduling approach are applied (referred to as static plan-
ning and dynamic planning, respectively). The static planning can be applied
only if the meta data for performance prediction is known in advance. The
hybrid approach proposed in [19] combines the just-in time scheduling and
the full-ahead planning by partitioning the workflow into subworkflows and by
performing full-graph scheduling of the individual subworkflows in a just-in-
time manner. Another hybrid approach presented in [60] achieves the same
goal by triggering rescheduling when the state of the Grid changes (i.e., when
some resources appear or disappear). Rescheduling of applications is the most
widely used method to make full-ahead planning more dynamic. To trigger
rescheduling of an application, certain acceptance criteria defined for the appli-
cation execution are needed, as well as a monitoring system which can control
the fulfillment of these criteria. An example of such acceptance criteria are the
performance contracts proposed in [52], which define the expectation concern-
ing the execution time of the applications, and which are applied in the GrADS
system [17, 6].

Advance reservation When scheduling a workflow, we should take into con-
sideration the environment in which the workflow will be executed. Most of
the Grid environments are based on local resource managements with standard
queuing systems which can give only a guarantee that a task submitted to the
Grid will be executed at some time point. Many of the systems (e.g., Pegasus
[19]) are based on DAGMan [16] which is a simple workflow processor which
processes workflows and sends workflow tasks to local queuing systems. This
simple model can be extended by applying advance reservation, which is a
limited or restricted delegation of a particular resource capability over a certain
time interval to a certain user. If an environment supports advance reservation,
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then the user can know in advance when his task may start, not relying on the
best-effort policy of the local queuing system. Therefore, we can distinguish
the following two types of scheduling:

With reservation. Advance reservation is supported and considered by
the scheduler.
Without reservation. Advance reservation is not considered by the sched-
uler, or not supported by the environment.

When considering queuing systems, the Grid scheduler should be aware if the
queues on resources have finite or infinite length (capacity). In case of the
finite-length queues, it is possible that queues become full and some jobs are
lost, which may cause the need for their resubmission. Different advance reser-
vation models for workflow Grid scheduling are proposed in [44, 54, 62]. In
[44], different algorithms for resource provisioning are proposed, which reserve
time slots on resources based on the economic cost and the execution time crite-
ria. The approach presented in [54] proposes a workflow scheduling approach
based on so-called progressive reservation. The introduced approach optimizes
the profit both of the user (minimal execution time) and of the environment (best
possible resource usage and fairness) by putting some limitations on the amount
of resources reserved for a single user at a time, and shows some advantage over
the approach based on simple attentive reservations which does not impose any
fairness policy. In [62], an advance reservation model is proposed based on the
concept of Application Spare Time. The spare time is assigned to every work-
flow task, based on the deadline defined by the user for the whole workflow,
in order to guarantee the feasibility of the workflow execution, when the actual
task execution times differ to a certain extent from the predicted times. Two dif-
ferent approaches for spare time allocation are proposed: recursive allocation
and Critical Path based allocation.

3.2 Taxonomy of scheduling criteria
The scheduling criteria may be characterized by various properties (e.g.,

workflow structure dependence, calculation method) which determine the op-
timization goal and the way in which the total cost of a workflow is calculated
for the given criterion. When scheduling workflows on the Grid, it is always
important to take into consideration the type of criteria used as the optimization
objectives in the given case. For instance, one scheduling algorithm will be
applied when minimizing the execution time of a workflow, and another one
will be applied when maximizing the quality of the results produced by a work-
flow. The scheduling criteria may also differ with respect to the Grid actor (e.g.,
resource consumer, environment) for whom the optimization goal is defined.
The proposed taxonomy of scheduling criteria, considering both the properties
of a single criterion and the joint properties of groups of criteria, is depicted in
Fig. 2.



244 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

Figure 2. Taxonomy of workflow scheduling criteria

Optimization model Considering workflow scheduling as an optimization
process, we can distinguish two different perspectives from which the criteria
can be defined:

Workflow-oriented. The optimization criterion is defined for the user who
executed the workflow (e.g., execution time, economic cost).
Grid-wide. The optimization criterion is defined for the Grid environment
(e.g., resource usage, fairness of execution).

Most of the related work proposes approaches based on the former perspective.
The latter perspective is common for local resource management systems (e.g.,
PBS [3], Sun Grid Engine [46], LSF [1], Maui [15]), and is also applied for
workflow scheduling, for instance in [63] where fairness of multiple workflow
executions is considered as one of the optimization goals. Dynamic cost models
based on Grid Economy and on other negotiation-based strategies, which are
described more in detail later in this section, can be used to equilibrate between
the requirements of the user and of the Grid. Market equilibrium which is the
goal of any economy-based technique is a desirable state from the point of view
of the Grid environment. Some study is conducted in [31, 33, 32] to compare
the influence which different negotiation strategies have on resource utilization
on the Grid.



Taxonomies of the Multi-Criteria Grid Workflow Scheduling Problem 245

Workflow structure dependence Whereas tasks in a task batch are indepen-
dent, workflows contain dependencies between tasks which determine a certain
workflow structure. For some scheduling criteria (e.g., for execution time), the
structure has to be considered when calculating the total cost, while for some
others (e.g., for economic cost) the structure can be neglected. This leads us to
two distinct classes of criteria:

Structure dependent (e.g., execution time).
Structure independent (e.g., economic cost).

Most of the existing workflow scheduling approaches only optimize execution
time which is a structure dependent criterion. Some multi-criteria workflow
scheduling approaches (e.g., [21, 59, 57, 58, 8]) also consider economic cost
which is structure independent. Some other scheduling criteria can belong to
either of the two classes, depending on the way the user defines them. Let us
denote by quality of results any kind of qualitative description (for instance,
expressed in percentage) of the results produced by alternative services (this
quality will usually be higher for an expensive commercial application than for
its open-source equivalent). To calculate the quality of the final results, the
user can either simply multiply the quality of the results produced by individual
workflow tasks, or can also consider the dependencies between different tasks
and the order in which the partial results are produced, defining in this way a
structure dependent function which calculates the quality of results.

Figure 3. Recursive calculation of aggregated costs for a structure dependent criterion

Within the class of structure dependent criteria, we can distinguish several
sub-classes, depending on the way in which the partial costs are aggregated in
the workflow. Let us consider as an example the calculation of execution time.
In order to calculate the total execution time, we calculate the aggregated costs
(execution times) for all workflow tasks τ ∈ T in a workflow w ∈ W , and use
the maximum aggregated cost as the total cost (execution time) of the workflow.
A calculation scheme for such a structure dependent criterion is depicted in



246 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

Fig. 3, where the aggregated cost for the task γ is calculated based on the
partial cost of the task γ and on the aggregated costs of the tasks βi, 1 ≤ i ≤ n.
The aggregated costs are calculated recursively, so the same scheme would also
apply for the tasks βi, 1 ≤ i ≤ n. The aggregated cost function will be denoted
acost : T × W × SC 	→ R. In case of execution time, the aggregated costs
of the predecessors are aggregated by finding the maximum cost among them.
This type of aggregation function is called disjunctive function, as it simulates
the logical OR operation and gives outputs no smaller than the largest argument.
For some other criteria (e.g., for quality of results), the aggregation function
can calculate the mean (or weighted mean) over the arguments. Such function
is referred to as averaging function. Many different averaging functions are
proposed in the literature ( [51, 36]). For our taxonomy, we chose four averaging
functions which seem to be most relevant from the point of view of workflow
scheduling:

Averaging. Averaging functions give outputs which lie between the great-
est and the smallest elements of the input (e.g., mean, weighted mean).

Conjunctive. Conjunctive functions simulate the logical AND and give
outputs no greater than the smallest element of the input (e.g., minimum).

Disjunctive. Disjunctive functions simulate the logical OR and give out-
puts no smaller than the largest element of input (e.g., maximum).

Mixed. Mixed aggregation functions exhibit different behavior in differ-
ent regions of the workflow (e.g., maximum for the end tasks, average
for the other tasks).

This classification shows some similarities to the classification of calculation
methods which is introduced in the later part of this section. However, an
aggregation function can only be defined for the structure dependent criteria, and
it applies only to a part of the cost calculation procedure (i.e., to the aggregation
of the predecessor costs).

Optimization impact Scheduling criteria may have different impact on the
optimization process. If the goal of the process is to find the best possible
cost for a certain criterion (e.g., to minimize the total cost), then we can say
that the criterion has an optimization objective. If the optimization process is
constrained by a constant limit established for a certain criterion (e.g., by a
budget limit or a time deadline), then we can say that there is an optimization
constraint assigned to the criterion. Obviously, there may exist a constraint (or
multiple constraints) defined for a certain criterion which has an optimization
objective. Therefore, the optimization impact of workflow scheduling criteria
can be divided into two classes:
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Objective. An optimization goal to find the best possible cost for the
given criterion (e.g., to minimize the execution time).
Constraint. A restriction imposed on the results of an optimization pro-
cess (e.g., a time deadline, a budget limit).

In most of the existing workflow scheduling approaches (e.g., [42, 19, 34, 37]),
there is an optimization objective defined for execution time (time minimiza-
tion). A common way to deal with a multi-criteria scheduling [50] is to define
an optimization objective for one criterion, and to establish constraints for all
the other criteria. The scheduling techniques presented in [59, 57, 58, 21] apply
this approach to the problem of bi-criteria scheduling, by defining a constraint
for one of the two scheduling criteria (either execution time or economic cost)
and by minimizing the other one.

When considering a criterion for which an optimization objective is defined,
we should also consider the optimization goal connected with the objective.
For instance, when optimizing the execution time of a workflow, the goal is
to minimize the total time. On the other hand, when optimizing the quality of
results or the security and reliability of execution, the goal is to maximize the
total cost. We can also imagine that the scheduling criterion is the ratio between
the costs for two contradicting criteria (e.g., between the memory usage and the
execution time). In such a case, the goal will be to obtain a total cost which is
possibly close to a certain goal value (i.e., the optimization objective is focused
on a certain goal cost). We will distinguish three different variants of scheduling
objectives:

Maximized. The optimization goal is to maximize the total cost (e.g., for
quality of results).
Minimized. The optimization goal is to minimize the total cost (e.g., for
economic cost).
Focused. The optimization goal is to achieve a certain total cost (e.g., for
memory usage/execution time ratio).

Some approaches (e.g., [8]) distinguish global constraints and local con-
straints:

Global constraint. A constraint defined for the whole workflow.
Local constraint. A constraint defined for a single workflow task.

Calculation method Another classification can be done with respect to the
operation used for the cost calculation. For instance, addition is performed
to combine the individual economic costs of tasks, when calculating the total
workflow cost. The same operation is used to calculate the total execution time
of a workflow, with a difference that the partial costs are added up taking into
consideration also the structure of the workflow (see Fig. 3). There exist a large
number of criteria for which it is convenient to express costs as real numbers
from the range [0, 1] (e.g., quality of results, probability of failure, availability
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rate, security). For these criteria, we usually multiply the partial costs of the
workflow tasks to calculate the total cost of the workflow. To make the picture
more complete, we also mention the class of concave criteria, proposed in [56].
The total cost of a concave criterion is equal to the minimal cost among all
the individual costs (e.g., bandwidth in pipelined execution or in networks).
Therefore, at least three important classes of criteria should be distinguished:

Additive (e.g., economic cost, execution time).
Multiplicative (e.g., quality of results).
Concave (e.g., bandwidth).

Cost model flexibility A simple cost model assumes that the partial costs of
services are a fixed input for scheduling and cannot be changed. This model
is widely accepted in the Grid, so it is applied in most of the existing Grid
workflow systems. However, there is an increasing interest in more adaptive
flexible cost models, where the costs can be negotiated or established through
some economy-based mechanisms before the application is executed. From this
point of view, we have the following two cost models for scheduling criteria:

Fixed. The partial costs of services are given as a fixed input for schedul-
ing.
Adaptive. The partial costs of services are dynamically adjusted through
certain mechanisms (e.g., auctions or negotiations).

This classification is similar to the classification based on intradependence,
which is introduced later in this section. The difference is that for the intrade-
pendent criteria, costs are calculated internally by the scheduler using some
deterministic functions, while in case of the adaptive cost models discussed
here, costs are either determined externally by a Grid broker or result from
negotiations between different actors of the Grid.

Adaptive pricing have been extensively studied in the past (although usually
not for workflow scheduling), and different models have been proposed. An
important class of such models originates from human economy, so the com-
mon name to refer to them is Grid Economy. Many Grid Economy models
have been enumerated and discussed in [11, 10], where a Grid architecture re-
alizing them has also been proposed. In the commodities market model, prices
are established centrally based on the current demand and supply rate, with the
goal of achieving market equilibrium. In the tender/contract-net model, the
consumer announces its requirements, and the service providers respond with
the their offers. The auction model supports one-to-many negotiation, between
a service provider and many consumers. Different auction models (English
auction, first-price auction, Vickrey auction, Dutch auction) are known in the
literature. The other economic models mentioned in [11] include the posted
price model, the bargaining model, the bid-based proportional resource shar-
ing model, the community/coalition/bartering/share holders model, and the
monopoly/oligarchy model.
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The Grid Economy models are usually applied to determine the economic
cost of services or resources, where the cost can either represent real money
or be applied just a useful abstraction introduced for instance for the sake of
a fair balance between the demands of different users of the Grid. Different
types of resources are treated as individual and interchangeable commodities
[55]. The scheduling approach proposed in [49] uses the commodities market
model to determine the cost of resource usage in context of non-workflow
streaming applications. The approches based on a single market and on multiple
markets are compared in this work. The work presented in [55] compares the
economic models based on the commodities market and on the second-price
Vickrey auctions, showing the superiority of the former approach in terms of the
economic factors like price stability, market equilibrium, consumer efficiency,
and producer efficiency. The introduced market model called “The First Bank
of the G” is an extension of the Scarf’s algorithm known in economy. A real
workflow scheduling approach based on an economic model is introduced in
[14], in which the first-price auction model is applied. Workflows are scheduled
in a full-ahead manner, and the scheduling is performed together with bidding
for resources. The distance of individual tasks from the end of the workflow
determines how urgent each task is; the more urgent tasks are given higher
prices during the auction in order to increase the possibility of meeting the
deadline defined for the workflow.

Other negotiation-based techniques are common for agent systems. The
automatic negotiation techniques introduced in such systems are developed
especially for computer environments rather then originate from human econ-
omy. A good introduction to the problem of automatic negotiation is presented
in [28]. According to this work, a negotiation strategy can be described by
the negotiation protocol, negotiation objects (objectives for which the negoti-
ation is performed), and the decision making model (the negotiation strategy).
Three groups of negotiation strategies are distinguished: the game theoretic
techniques based on the extensively studied strategies known in game theory,
the heuristics based on more intuitive techniques which lack solid theoretical
grounds, and the argumentation-based techniques in which the negotiating par-
ties can exchange between each other any kind of feedback rather than only
simple counter-proposals. The work presented in [31, 33, 32] proposes non-
workflow scheduling techniques using heuristic-based negotiation strategies.
The heuristics are implemented through special utility functions which deter-
mine the behavior of the negotiating parties. For instance, some utility functions
can make a negotiator “tough” (i.e., unwilling to change its initial proposals),
while some other functions can make it “conceding” (i.e., apt to accept counter-
proposal). The authors examine different scenarios in which job users and
resource providers apply different negotiation strategies, comparing the ratio
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of agreements successfully created within a limited time, the achieved utility
value, and the duration of the negotiation process.

Intradependence The notion of intradependence of scheduling criteria has
a major impact on the workflow scheduling. For some criteria, scheduling
decisions made for some workflow tasks may change the costs of some other
tasks. A good example of such a criterion can be the economic cost in a special
progressive price model. A common practice in the market is to introduce
a dependence between the size of an order and the price for an individual
item (usually, the larger the order, the lower the price). If this is the case,
then we can say that the scheduling decisions depend on one another within a
scheduling criterion. Also for execution time, the scheduling decisions made
for some tasks may influence the aggregated costs of some other tasks (because
tasks consume resources whose amount is limited). On the other hand, the
scheduling decisions made for criteria like reliability, quality of results, or the
economic cost calculated in a simple price model does not seem to show any
intradependence. From this point of view, we will distinguish two classes of
criteria:

Intradependent (e.g., economic cost in a progressive price model, execu-
tion time).
Non-intradependent (e.g., quality of results, economic cost in a simple
price model).

Within the class of intradependent criteria, which is the most difficult one
for scheduling, we can also distinguish two subclasses. For instance in the
aforementioned progressive price economic cost, decisions made for individ-
ual workflow tasks may influence the partial costs for some other tasks. For
a change in execution time, a scheduling decision made for a workflow task
does not always change the execution times of other tasks, however it usually
influences the way in which the aggregated costs are calculated. In this way,
we can distinguish two types of intradependence:

Partial cost related. The partial costs of workflow tasks are influenced
by the scheduling decisions made for some other workflow tasks (e.g.,
economic cost in a progressive price model).
Aggregated cost related. The aggregated costs of workflow tasks are
influenced by the scheduling decisions made for some other workflow
tasks (e.g., execution time).

Interdependence When considering multiple scheduling criteria, we may ob-
serve that some of them strongly depend on others, whilst some others are
mutually independent. For example, when optimizing the execution time of a
workflow, also the availability and the reliability of services should be taken
into consideration, as highly unstable resources on which a service is deployed
may provide longer execution times than its more reliable counterparts. On
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the other hand, the economic cost of a service usage does not have any influ-
ence on the execution time, so it can be considered irrelevant from the point of
view of this criterion. This observation is of major importance for scheduling,
since when considering a group of criteria where some criteria depend on some
other criteria, the multi-criteria optimization problem can often be reduced to
the optimization of a goal function being a simple product. Therefore, when
considering groups of criteria, we will distinguish the following two disjoint
classes:

Interdependent (e.g., execution time and availability).

Non-interdependent (e.g., execution time and economic cost).
A workflow scheduling approach based on the idea of interdependent criteria
reduction is proposed in the Instant-Grid [27]. The two criteria (number of CPUs
and the last known load) are used to calculate a special quality value for each
resource, based on which the scheduler selects the most appropriate mapping
for each workflow task (the Grid-wide optimization perspective applied).

3.3 Taxonomy of Grid resources
Characteristics of the resources on which tasks are executed are especially

important from the point of view of performance-oriented scheduling, in which
the scheduling goal is to optimize the amount of useful work compared to
the time and resources used (usually, the execution time or the job throughput
optimization). The scheduler has to take into consideration the type of resources
used for execution, and the way in which the resources handle the execution
of tasks. The proposed taxonomy of Grid resources from the point of view of
workflow scheduling is shown in Fig. 4.

Figure 4. Taxonomy of Grid resources

Diversity One of the main characteristics of the Grid resources is their het-
erogeneity. Therefore, most of the existing Grid environments belong to the
second one of the following two classes:

Homogeneous. Multiple resources have identical static and dynamic
characteristics (i.e., same type, same performance, same load, etc.).
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Heterogeneous. Multiple resources have diverse characteristics (i.e., dif-
ferent types, different performance, different load, etc.).

Heterogeneity can be understood as the existence of diverse characteristics (e.g.,
CPU speed, RAM size) within a group of resources of the same type (e.g., com-
putational resources). At the extreme, we can take into consideration even the
dynamic resource characteristics, and also call the identical resources which
have different CPU loads or different amounts of free memory heterogeneous.
On the other hand, heterogeneity can be considered only as the distinction
between different resource types (e.g., computational resources, network re-
sources, storage resources). We will distinguish two types of heterogeneity:

Single type. The resources of the same type (e.g., computational re-
sources) differ with respect to their characteristics (e.g., CPU speed, RAM
size).
Multiple types. The resources differ with respect to their types (e.g.,
computational, storage, and network resources).

The existing workflow scheduling approaches we are aware of address the
former variant of the problem, although the characteristics of some types of
resources (e.g., network bandwidth, storage size) are sometimes included in the
description of the computational resources (e.g., [25]).

Much effort has been put into addressing multiple types of resources on the
Grid. Stork [30] aims at “making data placement a first class citizen in the
Grid”, by handling data transfers tasks in a similar way as execution tasks.
The concept of Open Grid Service Architecture (OGSA) [24] has been intro-
duced to describe the Grid as a service-oriented environment where heteroge-
neous resources are treated in a uniform way as so-called Grid Services. The
MetaScheduling-Service (MSS) [53] developed within the VIOLA project aims
at co-allocation of different types of resources (currently, compute resources
and network resources) in multiple administrative domains.

Task execution Resources can be divided into two categories, according to
the way they can be used by multiple tasks:

Non-multiprogrammed. The scheduler can schedule at most a single task
to be executed on a resource at the same time.
Multiprogrammed. The scheduler can schedule multiple tasks to be ex-
ecuted on a resource at the same time.

The resources from these two classes are sometimes referred to also as disjunc-
tive and cumulative, respectively [4]. Most of the existing Grid environments
consist of parallel machines being managed by local resource managers which
allow only for disjunctive access to the resources (external load on the re-
sources can always be the case). Therefore, all the Grid workflow scheduling
approaches which we are aware of address the non-multiprogrammed resource
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model. In [41], a scheduler called O-OSKAR is proposed, which sched-
ules workflows of general (not necessarily computational) activities on mul-
tiprogrammed resources. The problem is approached as a Meta-CSP (Meta-
Constraint Satisfaction Problem), and solved using an algorithm called ISES

[2].

3.4 Taxonomy of workflow tasks
Workflow tasks may differ with respect to their requirements and character-

istics which have to be taken into consideration when scheduling a workflow.
The proposed taxonomy of tasks is depicted in Fig. 5.

Figure 5. Taxonomy of workflow tasks

Resource mapping In a similar way as a single resource can be used by
multiple tasks at a time (see Section 3.3), also a single task may require multiple
resources to be used (e.g., parallel MPI and PVM programs). We can distinguish
three classes of tasks, with respect to its resource mapping requirements:

Rigid. A task requires a fixed number of resources to be used (usually,
one resource).
Moldable. A task requires multiple Grid resources to be used, and the
number of resources required by the task is not known a priori but deter-
mined before the execution starts.
Malleable. A task requires multiple Grid resources to be used which may
be added or withdrawn from a job according to the current system state.

The processing speed of a task (referred to as the processing speed function) is
usually a nonlinear function of the number of processors allocated to the task.
Most of the existing workflow scheduling approaches assume that tasks belong
to the first class. The other two classes are much more difficult for scheduling,
as a new dimension is added to the task allocation problem. Many of the existing
algorithms for moldable and malleable tasks proceed in two steps [39]: the first
step aims at finding an optimal allocation for each task, and the second step
determines a placement for the allocated tasks, that is the actual processor set to
execute each task that minimizes the total completion time. Mixed task and data
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parallel application are considered often as cases of moldable and malleable
tasks (e.g., [40, 39], [12], [45, 25]).

A typical algorithm which deals with the problem of workflow schedul-
ing of moldable tasks in homogeneous environments is the Critical Path and
Area-based algorithm (CPA) [40]. This algorithm aims at finding the best com-
promise between the length of the critical path, and the average area TA which
measures the mean processor-time area required by the application. Formally,
TA = 1

R

∑N
i=1(t(τi, Np(ti)) · Np(ti)), where R denotes the total number of

resources, N the total number of tasks, τi, 1 ≤ i ≤ N a task, Np(τi) the num-
ber of resources allocated to the task τi, and t(τi, Np(τi)) the execution time
of the task τi executed on Np(τi) resources. In [39], CPA is extended to the
Heterogeneous Critical Path and Area-based algorithm (HCPA) designed for
heterogeneous environments. To adapt the algorithms to the heterogeneous
environments, the following two modifications are introduced: (i) a novel “vir-
tual” cluster methodology for handling platform heterogeneity is applied in the
allocation step, and (ii) a novel task placement step is introduced, to determine
whether the placement step of heuristics for homogeneous platforms is adapted
to the heterogeneous case.

Another approach to the problem of scheduling of moldable tasks in work-
flows is proposed in [12]. The authors show a way in which a typical list
scheduling algorithm for heterogeneous environment can be adjusted for mold-
able tasks. The authors propose a new M-HEFT algorithm which extends the
existing Heterogeneous Earliest Finish Time (HEFT) algorithm [61] with re-
spect to the way in which the cost values (expected execution times) for different
tasks are calculated. The cost values are used in the algorithm to determine the
scheduling order and to find the best mapping for each task. Since a single task
may use different numbers of CPUs of a compound Grid site, the values are
estimated for different configurations of different Grid sites (e.g., for different
numbers of CPUs of a cluster). In the simplest version of the proposed algo-
rithm (called M-HEFT1), the cost values are estimated for a single 1-processor
configuration of each site. Vienna Grid Environment [8] applies heuristics to
determine the number of processors required to execute an MPI job within the
user-specified time constraints.

The work presented in [25] addresses the problem of distributed database
query scheduling on the Grid. The authors enumerate three common approaches
to the problem based on three different kinds of parallelism: independent,
pipelined, and partitioned (or intra-operator). In context of the taxonomies
proposed by us, the first type of parallelism assumes that all tasks are rigid,
the second type is related to the pipelined workflows (see Section 3.5), and
the third type, which is exploited in the proposed approach, assumes that all
tasks are moldable. Distributed queries in the problem under consideration
are defined as tree-like DAGs consisting of different basic tasks (operators),
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which are originally described as single-node plans (where node refers to a
computational node), and which are subsequently converted to multi-node plans
(in which individual operators can be mapped to multiple computational nodes)
by the proposed algorithm. The parallelization of single-node plans is done by
incrementally increasing the number of computational nodes mapped to the
costlies (i.e., most time consuming) parallelizable operators.

The problem of scheduling of malleable tasks in a parallel environment is
addressed in [7]. The authors provide a theoretical analysis of the problem of
scheduling of independent tasks, and propose a scheduling algorithm that solves
the problem in linear time when all the processing speed functions are convex,
and in polynomial time when the speed functions are concave. The GrADS
projects [6] applies a dynamic performance tuning of malleable tasks by ap-
plying so-called MPI Swapping. In this approach, the resources are grouped
into two sets, the active set and the inactive set, where only the first set con-
tains resources which can be used by applications. During the execution, the
resources are systematically moved between the sets, depending on the current
performance measurements.

The requirement of multiple resources for a task is connected with the concept
of co-allocation, i.e., the simultaneous allocation of resources in multiple sites.
In the KOALA Grid Scheduler [38], co-allocation is done by the Co-allocator
(CO) which is responsible for finding the execution sites with enough idle
processors for the tasks. In the MetaScheduling-Service (MSS) [53], developed
within the VIOLA project, heterogeneous resources are co-allocated across
multiple administrative domains.

Migration Dynamic scheduling can be implemented more effectively in en-
vironments where preemption and migration are enabled. With respect to these
properties, we will distinguish two classes of tasks:

Migrative. Task execution can be checkpointed at a certain resource,
preempted, migrated, and resumed on another resource (assuming that
the operating systems on the resources support migration).

Non-migrative. Task migration is not enabled.

Task migration is rarely applied in the real Grid, due to well-known problems
with the implementation of reliable and effective task migration. All existing
implementations are restricted only to specific platforms, and impose strict
prerequisites on the tasks which can be migrated [5]. The only Grid workflow
system we are aware of which supports task migration is GrADS [6].

3.5 Taxonomy of workflow model
The taxonomy depicted in Fig. 6 differentiates workflows with respect to

their representation and behavior.
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Figure 6. Taxonomy of workflow model

Component model From the scheduling point of view, workflows may differ
with respect to the way computational tasks and data transfers are represented
in them. We can distinguish two classes of workflow models:

Task oriented. Computational tasks are represented as graph nodes. Data
transfers are represented as graph edges.
Task and data transfer oriented. Both computational tasks and data trans-
fers are represented as graph tasks.

The existing Grid workflow scheduling approaches are based predominantly
on the former model. There are only few workflow representations which
support the latter model (e.g., Karajan [29] and Stork [30]). In Vienna Grid
Environment [8], the low level workflow representation denotes both tasks and
data transfers as workflow nodes. However, in the high level representation
used for requirement specification and scheduling, there are no separate VGE
services representing data transfers. The distributed query workflows used in
[25] include also special workflow nodes called exchange operators which
involve communication between other workflow nodes.

Generality Although the workflow model specified by us in Section 2 is the
directed graph (digraph), many existing workflows have a well-defined struc-
ture which can be described by a simpler model being a subset of the general
digraph model (e.g., a master-worker workflow with well-defined parallel sec-
tions of identical tasks). For specific workflow models, there may exist some
specialized algorithms which produce better results than any general-purpose
digraph scheduling algorithm. Therefore, we will distinguish the following two
workflow models:

Specific. The workflow structure has certain regularities, so it can be
described by a well-defined subset of the general digraph model (e.g.,
parameter sweep applications).
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General digraph. The workflow is a general digraph defined in Section
2.

Many existing approaches are based on a specific workflow model. The work
presented in [45] considers a pipelined workflow model based on a sequence of
data parallel tasks. The workflows used to model distributed database queries
in [25] are based on a special tree-like structure constructed according to
certain restricted composition rules. The regular structure of the workflows
considered in [19] allowed to introduce the idea of workflow partioning which
consists in converting the workflow to a sequence of subworkflows. The dy-
namic scheduling of the parameter sweep applications considered in [34] is
approached by a special prioritization policy which gives higher priority to
the tasks whose so-called children’s ancestors have already been finished. In
[13], several heuristics for dynamic scheduling of parameter sweep applica-
tions (Min-min, Max-min, Suffrage) are compared, and a new heuristic called
XSuffrage is proposed. In the Abstract Grid Workflow Language (AGWL)
[23] used in ASKALON [22], the workflows are expressed by means of hier-
archical embedded structures (loops, parallel loop, conditionals, etc.), which is
appropriate for a broad range of scientific workflows. For scheduling purposes,
the workflows expressed in AGWL are converted to the general digraph model
[35]. The general digraph model of workflows is addressed for instance in [42,
63, 37, 21, 59].

Atomic structure dynamism Apart from task mapping, also changing the
basic workflow structure can be considered as a scheduling method. Workflow
nodes (atomic workflow elements) can be added to or removed from a workflow,
or can be grouped together to form new atomic elements, with the aim to increase
the profit of the user or of the Grid. We will say that an approach is designed
for workflows with a tunable atomic structure, if it may modify the workflow
structure (for optimization purposes) within the scheduling process, in contrast
to the approaches which modify the workflow structure only as a consequence of
a normal workflow execution (e.g., through loop unrolling or user interactions).
We also impose an additional restriction on this group, by assuming that it
contains only those approaches which add/remove/modify nodes, not those
which just add/remove/modify dependencies. The reason for this is to exclude
the approaches based on workflow clustering (i.e., on an auxiliary partition
of the workflow to a set of non-atomic subworkflows), which is a standard
scheduling approach. We introduce the following two workflow classes:

Fixed. The atomic workflow structure is not changed during the schedul-
ing process (some additional dependencies can be added or removed).

Tunable. Atomic nodes can be added, removed, or modified during the
scheduling process.
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In K-WfGrid [48], workflows are created on demand and semantically tuned
by the components called Workflow Composition Tool (WCT) and Automatic
Application Builder (AAB) before the tasks are mapped to services. Also in
PEGASUS [19], the workflows are first converted from an abstract to a con-
crete form. Three different restructuring techniques are involved in this process.
Firstly, data sets which are produced by workflows running in the Grid can be
reused in the subsequent workflow executions, which makes the execution of
some workflow tasks unnecessary. Secondly, the granularity of a workflow is
increased by combining (clustering) several tasks and treating the result as a sin-
gle unit for mapping and scheduling. The third restructuring technique consists
in clustering together several tasks scheduled to multi-processor systems, and
running them together as one schedulable unit, possibly in a master/slave fash-
ion. The last two approaches aim at decreasing the scheduling overheads. In
the approaches designed for pipelined workflows (e.g., [45]), tasks in the origi-
nal sequence can be replicated (several instances of the same task may process
different data sets in parallel), in order to increase the overall throughput.

Data processing This classification distinguishes two different types of work-
flow processing, which are addressed in different scheduling approaches. When
considering the amount of data processed by an individual workflow, we can
identify the following two workflow models:

Single data set. The workflow is executed once, for a single set of input
data.
Pipelined. The workflow is executed many times, for multiple data sets
which are processed by the workflow as a stream.

Most of the existing Grid approaches address the first of the aforementioned
classes. The second class is common in several application domains, includ-
ing digital signal processing, image processing, and computer vision. The
approach presented in [45] addresses the problem of scheduling of pipelined
computations with the goal of optimizing the latency and the throughput of ex-
ecution. The applications consist of a sequence of data parallel tasks which can
be mapped onto a parallel machine in a variety of ways, employing different
combinations of task and data parallelism.

In [49], the authors analyze the problem of scheduling of pipelined (stream-
ing) applications, and give several reasons why the classical scheduling algo-
rithms are not well suited to the problem addressed by them. Although they
define the problem for workflow scheduling, they provide only a solution for
scheduling of single processing units.

3.6 Classification of the existing Grid systems
To summarize the material presented in this section, in Table 1 we show a

survey of different existing scheduling approaches, classified according to the
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Table 1. Survey of Grid workflow scheduling approaches
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proposed taxonomies. In this survey, we concentrate only on the workflow
scheduling approaches dedicated for the Grid, although the term “Grid” may
not be explicitly mentioned in all of them. In order to make the comparison
more concise, we do not show there the classifications introduced by us for
scheduling criteria (except for optimization model and cost model flexibility).
Instead, we just state explicitly whether the compared approach considers ex-
ecution time, economic cost, or other kinds of criteria. Several times, groups
of multiple approaches are described in a single table row. It was done when
the approaches were proposed by the same authors and were logically related
(e.g., were developed within the same project).

4. Conclusions
The presented study shows that multi-criteria scheduling on the Grid is a com-

plex problem for which multiple variants can be distinguished based on differ-
ent possible aspects. Obviously, it is not feasible in general to develop a single
scheduling approach which works efficiently for all classes of the problem. For
instance, it is rather unlikely that a scheduling approach which works well for
workflows consisting of rigid tasks running on non-multiprogrammed resources
will work equally good for a pipelined workflow processing a stream of video
data, containing moldable tasks which can share the same resources. There-
fore, when developing any general scheduling strategy, the first step should be
to identify the set of problem classes which can be approached in a similar way.

There exist some multi-criteria workflow scheduling approaches, most of
them considering execution time as the most important scheduling criterion. In
most of the cases, the scheduling process performed for the criteria is workflow-
oriented. The existing workflow scheduling approaches are usually based on
full-ahead planning. Most of them are designed for task oriented general di-
graphs and on the data processing model based on a single data input set. The
pipelined workflows, which are characteristic only for some specific areas (e.g.,
for multimedia systems) have considerably different behaviors and require dif-
ferent scheduling techniques.

There are almost no workflow scheduling approaches which are based on an
adaptive cost model for criteria. Such cost models present a very promising
research direction, as they can lead towards scheduling techniques applicable in
utility Grids with paid access to resources, and which can address the challenges
like Service Level Agreements (SLAs). Advance reservation can be applied as
a logical extension of such models. There is still a large research potential for
scheduling of malleable tasks, and for the multiprogrammed resource model,
although it is not certain whether the latter problem class has any significant
practical meaning (we are not aware of any workflow scheduling research for the
Grid which addresses this problem). Another interesting research area is related
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with the heterogeneity model based on multiple resource types. Also workflow
tuning and task migration as optimization methods seem to be underrepresented
among the existing scheduling approaches.

The current study shows that the Grid workflow scheduling problem is still
not fully addressed by the existing work. We believe that the presented tax-
onomies will facilitate development of scheduling approaches capable of deal-
ing with some of the distinguished problem classes. In the future, we are plan-
ning to invent a generic scheduling approach for two or more criteria, exploring
different types of criteria. An economic model provided for multiple consumers
and providers, incorporating price negotiation and advance reservation, seems
to be most appropriate for our goals. Starting from simple cases (bi-criteria
scheduling), we will try to move towards more complicated problem classes,
considering different types of intradependence, and different characteristics of
tasks and workflows.
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1. Introduction
Scientific workflows emerged as one of the most attractive paradigm for pro-

gramming Grid infrastructures. As a consequence, numerous efforts among
which the ASKALON project [2] are currently developing integrated environ-
ments to support the development and execution cycle of scientific workflows
on dynamic Grid environments.

In this paper, we illustrate a case study of using ASKALON for porting and
executing a hydrological application in a real Grid environment. First of all, the
application is specified by the user at a high-level of abstraction using a UML
modelling tool or an XML-based specification language (see Section 2). In
combination with the XML language, a resource manager shields the user from
the complexity of the underlying Grid infrastructure through advanced function-
ality such as resource discovery and matchmaking, and semi-automatic deploy-
ment of software components. A performance prediction service presented in
Section 4 estimates the execution time of individual activities of different Grid
sites using a well-defined training phase based on a reduced set of experiments.
A scheduling service (see Section 5) uses optimisation heuristics to map en-
tire or partial workflows onto the Grid such as the predicted execution time
is minimised. Optionally, to increase predictability of executions in dynamic
environments like the Grid, the scheduler negotiates with the resource manager
advance reservation slots for individual activities. Finally, an enactment engine
service executes the workflow on the Grid according to the given schedule and
investigates the most severe sources of performance overheads and the scal-
ability of the execution compared to the fastest local Grid site available (see
Section 6).

2. Invmod
Invmod [10] is a hydrological application designed at the University of Inns-

bruck for calibration of parameters of the Water Balance Simulation Model ETH
(WaSiM-ETH) hydrological application developed at the Swiss Federal Institute
of Technology Zurich [4]. Invmod uses the Levenberg-Marquardt algorithm to
minimise the least squares of the differences between the measured and the sim-
ulated runoff for a determined time period. We re-engineered the monolithic
sequential Invmod application into a Grid-enabled scientific workflow consist-
ing of two levels of parallelism as depicted Figure 1: (1) each iteration of the
outermost parallel section called random run performs a local search optimi-
sation starting from an arbitrarily chosen initial solution; (2) alternative local
changes are examined separately for each parameter to be calibrated, which is
done in parallel in the innermost parallel section of wasim b activities. The
number of sequential iterations in the inner loop is variable and depends on the
actual convergence of the optimisation process.
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3. UML Workflow Modelling
ASKALON offers to the end user the privilege of composing workflows

through a graphical modelling tool based on the UML standard that combines
Activity Diagram modelling elements in a hierarchical fashion. We have im-
plemented this graphical service as a platform-independent workflow editor
in Java based on the Model-View-Controller paradigm comprising three main
components: graphical user interface, model traverser, and model checker. The
drawing space consists of a tabbed panel that can contain several diagrams. The
model traverser provides the possibility to walk through the model, visit each
modelling element, and access its properties (for instance, element name). We
use the model traverser for the generation of various model representations;
for instance, an XML representation serves as input for the ASKALON Grid
environment. The model checker is responsible for the correctness of the model.

To efficiently model the Invmod workflow introduced in Section 2 in UML,
ASKALON introduces two standard constructs (see Figure 2): (1) parallel
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Figure 1. The unrolled Invmod workflow.
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<<ParallelFor>> parallelFor1 pFor1Index=1:cgwdInput/amountOfRandomRuns:1

<<Activity>>

iWasimA

<<Activity>>

iWasimD

<<For>> forLoop for1Index=1:1:1

<<ParallelFor>> parallelFor2 pFor2Index=1:cgwdInput/amountOfParameters:1

<<Activity>>

iWasimB 1

<<Activity>>

iWasimB 2C

<<Activity>>

iFindBest

Figure 2. The Invmod compact UML representation in ASKALON.

loops for expressing the large number of outer parallel random runs (denoted
through rand rans as degree of parallelism in Figure 1 and parallelFor1 in
Figure 2) and the inner parameter calculations (denoted through no params as
degree of parallelism in Figure 1 and parallelFor2 in Figure 2); (2) sequential
loops (denoted as forLoop in Figure 2) for repetitive invocation of the inner
parameter calibration steps which contains a loop carried dependency (and
therefore cannot be parallelised) and a dynamic convergence criterium.

4. Performance Prediction
The purpose of the prediction service is to support optimised scheduling and

ultimately high performance executions in heterogeneous Grid environments.
We employ a prediction model based on historical data collected through a
well-defined experimental design and training phase. Specifically in our work,
the general purpose of the experimental design phase is to set a strategy for
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experiments to get the maximum performance information (execution time) to
support its prediction later in minimum numbers of experiments.

We consider the Grid as consisting of a number of homogeneous parallel
computers with heterogeneous parallel architectures and underlying processors.
The factors affecting the response variable which we currently consider are the
problem range p incorporating the set of value instances for each parameter
variable, the Grid size g comprising all the Grid sites (i.e. parallel computers),
and the average machine size m including all different processor numbers on a
Grid site. An experiment is an execution of the application for a certain problem
size, on a certain Grid site, using a well-defined machine size.

To reduce the experimental space from p×g×m, we introduce a Performance
Sharing and Translation (PST) mechanism based on the experimental obser-
vation of inter- and intra-platform performance relativity of embarrassingly
parallel applications (our pilot applications) across different problem sizes.

Inter-platform PST specifies that the performance behaviour Pg(A, p) of an
application A for a problem size p relative to another problem size r on a Grid
site g is the same as that of the same problem sizes on another Grid site h: i.e.
Pg(A,p)
Pg(A,r) � Ph(A,p)

Ph(A,r) .
Similarly, intra-platform PST specifies that the performance behaviour of

an embarrassingly parallel application A on a Grid site g for a machine size
m relative to another machine size n for a problem size p is similar to that for
another problem size q, i.e. Pg(A,p,m)

Pg(A,p,n) � Pg(A,q,m)
Pg(A,q,n) .

Inter-platform PST assumes a problem size of one, therefore in our notation
Pg(A, p) ≡ Pg(A, p, 1).

We choose one Grid site (the fastest based on previous runs) as the reference
site and make a full factorial set of experiments on it. Later, we make one
single experiment on each of the other Grid sites and use the reference values
to calculate the predictions for other platforms using inter-platform PST and
thus minimise problem size combinations with the Grid size. Similarly, to
minimise machine size combinations with the Grid size, we make a full factorial
of experiments with one reference machine size and later make one single
experiment each for each of the other machine sizes to translate the reference
performance values for other machine sizes using intra-platform PST.

By means of inter-platform PST, the total number of experiments reduces
from p×m× g to p×m + (g − 1) for parallel computers, and from p×m to
p+g−1 for single processor machines. By introducing intra-platform PST, we
reduce total number of experiments for parallel machines (Grid sites) further to
a linear complexity of p + (m − 1) + (g − 1).

We analysed the scalability of our experimental design strategy by varying
the problem size from 10 to 200 for fixed values of the remaining factors: 10
Grid sites with machine size 20 and 50 single processor machines. We observed
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Figure 3. Experiment reduction with problem, machine, and Grid size.

Figure 4. Relative values of wasim b2c.

a reduction in the total number of experiments from 96% to 99%, as shown in
Figure 3. A reduction from 77% to 97% in the total number of experiments was
observed when we varied the machine size from one to 80 for fixed factors of
10 parallel machines, 50 single processor Grid sites and problem size of five.
From another perspective, we observed that the total number of experiments
increased from 7% to 9% when the Grid size was increased from 15 to 155 for
the fixed factors of five parallel machines with machine size of 10 and problem
size 10. We observed an overall reduction of 78% to 99% when we varied all
factors simultaneously: five parallel machines with machine size from 1 to 80,
single processor Grid sites from 10 to 95, and problem size from 10 to 95.

We comparatively show in Figure 4 the predicted results using the inter-
platform PST method versus the measured values for the wasim b2c activity
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Table 1. A subset of the Austrian Grid testbed.

Rank Site Architecture Size Processor Ghz Mgr. Location

1 pc2201 NOW, Ethernet 8 Pentium 4 1.8 Torque Innsbruck
2 pc2509 NOW, Ethernet 8 Pentium 4 1.8 Torque Innsbruck
3 hydra COW, Ethernet 6 Athlon 1.6 Torque Linz
4 pc450 NOW, Ethernet 8 Pentium 4 1.8 Torque Innsbruck
5 agrid1 NOW, Ethernet 8 Pentium 4 1.8 Torque Innsbruck
6 pc338 NOW, Ethernet 8 Pentium 4 1.8 Torque Innsbruck
7 altix1 ccNUMA, Altix 8 Itanium 2 1.6 PBS Linz
8 schafberg ccNUMA, Altix 10 Itanium 2 1.6 PBS Salzburg

in the Austrian Grid testbed depicted in Table 1. The lowest curve represents
the execution values on the base Grid site whose values are used in the PST
mechanism. Every two curves of measured and predicted values are very much
similar, however, we can see that they are closest to each other near the reference
problem size (i.e. the one used for the single measurement on the target Grid
site) and the difference increases with the distance from the reference problem
size. Due to this reason and whenever possible, we take the reference problem
size as close as possible to the target value. We observed that the average
variation in the predicted values from the measured value, if made on the basis
of maximum available value, is at the most 10% which yields 90% accuracy
in the prediction. As we get more data during the actual runs, the probability
of finding closer parameter values other than the one calculated in the training
phase increases which further improves the prediction accuracy.

5. Scheduling
The ASKALON scheduler applies best-effort heuristic algorithms to achieve

good workflow mappings onto the Grid. We currently consider three types of
optimisation heuristics: (1) simple myopic heuristics, like Condor matchmak-
ing [7], look only at single activities which are mapped onto the best resource
available; (2) full-graph heuristics such as genetic [6] or Heterogeneous Ear-
liest Finish Time (HEFT) [12] algorithms optimise the entire predicted work-
flow makespan. The full-graph algorithms receive as input a Directed Acyclic
Graph (DAG) (where each DAG node represents a workflow activity) generated
primarily by unrolling the workflow sequential and parallel loops and by elim-
inating the conditional activities, as we formally presented in [6]. Since such
DAGs can get rather huge, we also propose (3) partitioning-based heuristics
as a hybrid mechanism that schedules in advance a sub-workflow of a certain
depth.
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5.1 Heterogeneous Earliest Finish Time Algorithm

Figure 5. HEFT weights and ranks.

HEFT [12] is a list schedul-
ing algorithm adjusted for het-
erogeneous environments. The
algorithm consists of three dis-
tinct phases: the weighting
phase, the ranking phase, and
the mapping phase. During the
weighting phase, to each activ-
ity N is associated a weight
calculated as the average value
of the predicted execution times
TN (R) on every individual re-
source R (i.e. processor) avail-
able on the Grid: W (N) =

avg
∀R∈Grid

{TN (R)}. In the exam-

ple depicted in Figure 5, the Grid consists of three processors and, therefore, the
weight of the activity A is calculated as: W (A) = TA(R1)+TA(R2)+TA(R3)

3 =
5+8+8

3 = 7. Similarly, the weight associated to a data dependency is calculated
as the average of the predicted data transfer times on all interconnection links
available between Grid sites. The ranking phase is performed by traversing the
workflow graph upwards and assigning a rank value to each activity. The rank
value of an activity is equal to the weight of the activity plus the maximum rank
value of the successors, including the communication to the current activity (if
any): R(N) = max

∀(N,Succ)
{W (N) + W (N, Succ) + R(Succ)}. For example,

the rank of activity A is calculated as: R(A) = max{W (A) + W (A, B) +
R(B), W (A) + W (A, C) + R(C)} = max{7 + 5 + 26, 7 + 3 + 15} = 38.
The list of workflow activities is then sorted in a descending order according
to their ranks, i.e. A, B, C, and D. Finally in the mapping phase, the ranked
activities are mapped onto the processors that deliver the earliest completion
time, i.e. A onto R1, B onto R1, C onto R3, and D onto R1.

5.1.1 Experiments. We converted the Invmod workflow into a DAG by
unrolling the sequential loops within each parallel random run using historical
information about the number of iterations available from previous executions.
A typical result of such a conversion is a strongly imbalanced workflow in
which one of the outermost parallel loop iterations is significantly longer than
the others because of slower convergence of the optimisation algorithm for the
corresponding random run. In our case, the converted DAG consists of 100
parallel iterations, one of which contains 20 sequential iterations of the inner
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optimisation loop, while the other 99 iterations only contain 10 iterations each
(see Figure 6). This means that one parallel iteration needs approximately twice
the execution time of the others.

Figure 6. Invmod converted DAG.

Figure 7 illustrates the predicted
makespan delivered by each scheduling
algorithm for the imbalanced Invmod
workflow in the Grid testbed depicted
in Table 1. As expected, the myopic
algorithm provides the worst results which
are approximately 32% worse than HEFT.
The genetic algorithm produces quite good
results, however, worse than HEFT since
does not consider in the optimisation process the execution order of parallel
activities scheduled on same processor. In addition, we applied incremental
scheduling using with 10, 20, and 30 partitioning layers and compared the
results against the full-ahead workflow scheduling consisting of 44 layers.
For such strongly imbalanced workflows, the activities belonging to workflow
execution paths that are much longer than the critical schedule path should
be given priority which is well handled by the entire workflow scheduling
strategy based on optimisation heuristics like HEFT and genetic algorithm.
Therefore, scheduling strategies based workflow partitioning deliver worse
results than those based on full workflow analysis, although they are still better
than the one found by the myopic algorithm. The genetic algorithm takes two
orders of magnitude longer than the others to converge to good solutions (see
Figure 8). We performed experiments with and without prediction information
to measure the importance of the performance prediction service. With
prediction information, the results are between 33% and 50% better.
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5.2 Advance Reservation
To support advance reservation, we modified the mapping phase of the HEFT

algorithm by assigning to each activity a list of resources instead of a single
resource only. The list is ordered according to the increasing completion time so
that the first element on the list is always the best one. In the example depicted in
Figure 5, the resource order for the first activity A is: {R1, R2, R3}. Finally, we
introduced to the algorithm a new fourth phase which we called the reservation
phase in which the scheduler negotiates with the resource manager one resource
from the mapping list of each activity. The reservations are performed in a retry
loop which handles situations when a negotiation fails for some reason (e.g.
the offer is timed out or taken by another user). We developed two reservation
strategies: attentive and progressive.

The attentive reservation offers a requested slot only if it is available, oth-
erwise generates alternative offers according to the available slots close to the
requested time frame. While generating alternative offers, it tries to keep the
reserved segments as minimum as possible by proposing alternative options
which are overlapping or adjacent to the existing reserved slots, i.e. it tries to
find slots during or immediately before or after an existing reservation for all
the available processors in a Grid site.

The progressive reservation is an extension of the attentive algorithm that
considers fairness as well. This method attempts to fairly distribute available
resource capacity among competing clients instead of allowing a single client
reserve the entire capacity available on a Grid site. The earliest time when a
reservation can be made depends on the number and duration of the reservations
already made by the client and is done by introducing a new restriction on the
number of processors of a Grid site which can be offered to a user at once.

As output, the scheduler returns an execution plan and the reservations per-
formed for each activity.

5.2.1 Experiments. We performed several experiments, each of which
consisting of 10 workflows executed in sequence at 60 seconds time interval.
Reservations were performed for individual processors which gave to users
exclusive access over the allocated time periods. In order to challenge this
particular experiment, we simulated the execution of the workflows in a highly
dynamic Grid environment by altering the actual execution time randomly up
to 50% from the predicted values to count for possible inaccurate predictions,
queuing system delays, security latencies, or external load. Therefore, the
workflow execution does not necessarily follow the schedule and the reserva-
tions. To ameliorate this behaviour, the scheduler can request for either short
reservations, which are 20% longer than the predicted execution time, or for
long reservations which are twice as long.
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Figure 9. Unfairness and resource usage
for different reservation approaches.

Figure 10. Predictability for different
reservation approaches.

We first evaluated the reservation unfairness by calculating the standard devi-
ation of execution times over all workflows W scheduled within an experiment:
tavg(W ) =

∑
∀w∈W tact(w)

|W | , ρ(W ) =
√

1
|W |

∑
∀w∈W (tact(w) − tavg(W ))2. A

high value of ρ indicates that some workflows took significantly longer than
others, which means a low resource allocation fairness. Obviously, the pro-
gressive approach gives always a better fairness than the attentive approach
(see Figure 9).

Figure 10 compares the predictability of different reservation approaches
calculated as the relative overhead Opred derived from inaccurate predictions
that underestimate execution times and, therefore, exceed the reservations:

Opred(w) =

{
tact(w)−tpred(w)

tpred(w)
, tpred(w) < tact(w);

0, tpred(w) ≥ tact(w).
The highest prediction error

(200%–400%) is obtained by the scheduling without reservations. The attentive
reservations with short reservation requests do not provide good predictability
either as they fill the resources with tight time slots which allow a very small er-
ror margin for which any exceeding time slot can be very costly (see workflow
with label 2). The progressive approach provides much better predictability
because the reservations do not fill the time space too tightly so that a delayed
activity can easily find an ”emergency” slot. Long reservation requests elimi-
nate entirely the problem of wrong predictability and no activities are delayed
anymore.

In addition, we also measured the resource usage UR as a ratio between the
aggregated time when resources were effectively used and the overall avail-
able execution time (number of available resources multiplied by the total time
during which all experiments were performed): UR =

∑
∀A∈W tA

ttotal·|R| , where |R|
represents the number of resources available. The best usage (more than 80%)
is achieved for the approach without reservations (see Figure 9). For the reser-
vations with short reservation requests, the usage is more than 25% lower for
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Figure 11. Scalability. Figure 12. Speedup and efficiency.

both attentive and progressive reservation policies. Applying the long reserva-
tion requests provides an additional loss of more than 10% which decreases the
resource usage to less than 50%.

6. Scalability analysis
The ultimate goal of our work is to study whether through our techniques we

can really gain performance by executing the Invmod workflow in the Austrian
Grid environment. The workflow execution is coordinated by the ASKALON
enactment engine after receiving a complete schedule. We selected a problem
size consisting of 100 parallel random runs. We first executed each problem
size on the pc2201 reference Grid site, which is the fastest cluster from the
Grid testbed for this 32 bit application. Then, we incrementally added new
sites to the execution testbed (in the order given by the rank column in Table 1)
to investigate whether we can improve the performance of the application by
increasing the available computational resources. During the experiments the
Grid was idle, while access to processors was granted by the local queuing
system. For each execution, we scheduled the activities using the HEFT al-
gorithm without reservations and measured the execution time and the most
significant communication and Grid middleware (comprising scheduling and
resource management) overheads.

We calculated the workflow speedup as the ratio between the fastest single site
execution time T g

seq (pc2201 in Innsbruck) and the current Grid execution time

T : S =
min

∀g∈Grid
{T g

seq}
T . In addition to the speedup, we computed the efficiency

of each execution as the speedup normalised against the number of the Grid sites
used, where each Grid site g is weighted with the speedup of the corresponding

single site execution time: E = S∑
∀g∈Grid Sg

, where: Sg =
min

∀g′∈Grid

{
T g′

seq

}

T g
seq

. The
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efficiency formula becomes therefore: E = T−1

∑
∀g∈Grid(T g

seq)−1 . The fastest Grid

site has a weight of one, whereas the slowest Grid site has the smallest weight
(i.e. closest to zero).

Figure 11 shows that the Invmod execution time improves by increasing the
number of Grid sites. The speedup curve is not linear because of the increasing
Grid middleware overheads and a larger load imbalance beyond four aggregated
sites (see Figure 12). The largest Grid middleware overhead is achieved for one
single Grid site due to the large number of requests that have to be served
by the GRAM gatekeeper which becomes a bottleneck. This overhead first
decreases with the number of Grid sites and increases again beyond five sites
due to the distributed nature of the environment controlled by one centralised
engine. Beyond six sites, the middleware overhead represents one fifth of the
overall execution time which produces a rather low increase in performance
and decreases the efficiency. Since the schedule is performed by the HEFT
algorithm such that the data dependent activities are scheduled on the same
sites, the time spent in communication is negligible in all experiments despite
the rather large size of the data dependencies (gigabytes). Despite the large
middleware overhead, we obtained a very good efficiency over 60%.

7. Conclusions
We presented techniques used in the ASKALON project to support predic-

tion, scheduling, and performance-oriented execution of a hydrological appli-
cation in the Austrian Grid environment. The workflow is first expressed at a
high-level of abstraction using a novel graphical tool based on the UML mod-
elling standard and advanced constructs such as parallel and sequential loops.

A performance prediction services employs a well-defined experimental de-
sign to extract the maximum amount of information needed for prediction with
a reduced number of training runs. While there have been some attempts to
get reactive training set for performance prediction of Grid application through
analytical benchmarks and templates [3] [9], to our knowledge we are the first
to attempt a proactive training phase with proper experimental design.

A scheduling service uses global optimisation heuristics to find good map-
pings onto the Grid that minimise the execution time. To our knowledge, our
scheduler is the only one to effectively employ the HEFT algorithm for real
applications in a real Grid environment.

An resource manager supporting advance reservation assists the scheduler
in increasing execution predictability in dynamic environments like the Grid.
In contrast to other existing approaches [1] [5] [8], we provide a customis-
able negotiation mechanism and compare two different reservation approaches
among which the progressive approach shows promising results with respect to
different evaluation metrics.
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Finally, an enactment engine supported by a systematic performance analysis
service tries to go beyond existing monitoring tools [11] and identify the major
sources of overhead that may occur in distributed Grid executions.
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Abstract A variety of grid middlewares and workflow languages causes the existence of
many workflow management systems (WfMS). Formalisms used to represent
workflows vary from simple Directed Acyclic Graphs (DAG) to more complex
(non deterministic) Petri Nets. Therefore a workflow description is strictly bound
to a particular WfMS and to the computational resources that WfMS address, as
far as no cooperation among WfMSs exists. This might be critical in scientific
workflows where a large amount of resources is usually needed. In this paper
we propose a WfMS that aims at language independence and Grid middleware
abstraction dealing with interoperability as proposed in the reference model of
the Workflow Management Coalition (WfMC). The main goal of such WfMS is
to provide an effective solution to run complex scientific workflows (legacy or
not) taking full advantage of the distributed and etherogeneous nature of the Grid.
A Petri Net formalism has been chosen as internal representation due to its formal
behavioral description and the existence of several analysis tools. Our proposed
WfMS will be implemented on top of the gLite Grid middleware provided by the
EGEE project because of its stability and large adoption.

Keywords: Grid, workflow management, interoperability, Petri Net, EGEE/gLite
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1. Introduction
The evolution of the Grid towards a service-oriented architecture enables

scientists to build complex applications as workflows. WfMSs allow the com-
position and execution of such distributed applications at a high abstraction
level; a workflow language, usually graph based, is used to specify depen-
dencies (control and data flow) between tasks. Several WfMSs exist both in
scientific and in business environments. This underlines the research interest
in this field.

Unlike business WfMSs, scientific ones lack a recognized standard; as a
consequence several workflow languages exist. Apart from the syntax, these
languages differ for the formalism used to express the workflow model. Most of
the graphical workflow languages are based on DAGs where the control flow can
be described in terms of sequence, parallelism and choice. More powerful than
DAGs, formalisms such as Petri Nets and π-Calculus allow to define iteration
(also know as loop or cycle). As a consequence of that variety of languages and
formalisms, WfMSs are incompatible. Furthermore a WfMS usually address
a small set of computational resources and without interoperability scientific
workflows cannot fully take advantage from the distributed, heterogeneous na-
ture of the Grid. The Workflow Management Coalition (WfMC) encourages
WfMSs standardization in its reference model which defines a set of APIs (called
WAPI) and interfaces numbered from 1 to 5 in order to achieve interoperability.
In particular, interface 4 describes different levels of workflow coordination/co-
operation. Unfortunately the WfMC has so far failed its standardization scope
and no WfMS formally follows its reference model.

In this paper we propose a generic WfMS architecture that abstracts from
the underlying grid middleware and deals with workflow interoperability. As
we will see in detail, the definition of a grid abstraction layer makes it possible
to build a middleware-independent workflow engine. A Petri Net formalism
is used as the internal representation due to its formal semantics. Petri Nets
capture both the control and data flow of the workflow, they formally describe
its state evolution and they are Turing-complete. Workflow interoperability is
addressed using language translators and model converters.

The implementation of our WfMS will rely on the gLite Grid middleware.
gLite exposes several Grid services with a good level of reliability and the
amount of managed resources allows users to execute complex and large work-
flows. The Job Description Language (JDL) is the lingua-franca of the gLite
middleware, it is used for job and also workflow (expressed as DAGs) descrip-
tions. DAGs are executed by Condor DAGMan [1] which provides a basic
support for workflow management. In fact, DAGMan pratically lacks failure
recovery and that limits expressiveness in workflow design. With this work
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Figure 1. The WfMS Architecture, interfaces A and B will be explained in more detail in Sect.
4.

we want to improve workflow support in gLite allowing users to keep all the
advantages of using a full feature WfMS.

In Sect. 2 we will go along describing in details at the engine architecture,
defining the layers and how they interact. In Sect. 3 we will focus on the
interoperability problem and in Sect. 4 we will show some details related to
the implementation of such WfMS, concluding with the description of how we
intend to progress with this work in the future in Sect. 5.

2. Workflow Architecture Overview
In this section we propose a generic WfMS architecture that aims at Grid

middleware independence, as proposed in [2], and at multi-language support.
The use of a layered architecture makes it possible to abstract both from a partic-
ular Grid infrastructure and a workflow language in order to provide portability
and multi-language compatibility.

An outline of such architecture is shown in Fig. 1. At the bottom lies the
basic Grid infrastructure: a collection of computational and storage resources.
These resources are transparent to users thanks to a so called Grid middleware
which acts as a mediator that provides a consistent and homogeneous access to
them.

Since multiple Grid infrastructures still exist, a Grid Abstraction Layer is
introduced in order to abstract high level Grid functionalities such as job sub-
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mission, data transfer, job state observation and resource reservation. This
makes it possible to decouple the workflow engine from the underlying grid
architecture allowing workflows to use a large set of Grid infrastructures and
therefore resources.

The workflow engine is the main component of the WfMS; it basically sub-
mits tasks to the Grid taking care of their dependencies and the overall workflow
execution. The engine we are going to propose in this paper executes work-
flows represented in term of Petri Nets. Petri Nets have been chosen as internal
model because of their formal semantics. The structure of a Petri-Net-model
is formally defined by a set of places, a set of transitions and a set of arcs con-
necting places to transitions and vice versa (but not place to place or transition
to transition). The High Level Petri Nets (HLPN) model extends classical Petri
Nets with features that make them more suitable for workflow representation;
an introduction to theoretical aspects of HLPN can be found in [3](in our paper
we always refer to HLPN when the Petri Net term is used). The dynamic behav-
ior of the net is described by using tokens which are associated to places; tokens
enable transitions, make them fire and as a consequence they flow through the
network. From a workflow perspective, a transition is associated to a task ex-
ecution (job submission) and a token represents data that flows between tasks.
An outline of a Petri-Net-based workflow engine can be described using the
state chart diagram shown in Fig. 2. The engine needs to select enabled tran-
sitions, submits relative tasks to the Grid and monitors their execution; when a
task ends the net state is updated, data (tokens) are moved and new transitions
are selected to fire. The workflow execution continues until all the submitted
jobs terminate and there is no further enabled transition. Unlike a formal Petri
Net model, where transitions are atomic operations, we have also to deal with
a transition failure (referred to a task failure). In scientific workflow, tasks are
tipically operations which take raw data in input and produce refined data as
output. As far as tasks are usually idempotent, the common failure recovery
strategy (which is also used by DAGMan) consists in a task re-submission.
However, in ordert to achieve at business workflows compatibility, we have to
deal with different failure recovery strategies (i.e. rollback, choose an alter-
native task). This is made possible by pushing out of the engine the failure
management: when a failure is recognized, it is handled by the workflow itself
as shown in Fig. 2. Failure management could be explicity done by the user
during the process design; or as a result of a workflow refinement discussed in
[4].

The top layer aims at language independence. The basic idea is to make
the workflow engine compatible with a large set of workflow languages. A
pluggable system of parsers provides support for several languages in order to
allow collaboration between WfMSs and support for legacy workflows. As
we will see in more detail in the next section this layer has the responsibility
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Figure 2. The Workflow engine behavior

to extrapolate the semantics behind a workflow description and translate it in
terms of a Petri Net. On the other side the gateway makes it possible to transfer
parts of a process to a different WfMS.

Our interest is to build such WfMS in term of a micro-kernel pattern as
proposed in [5]. A micro-kernel pattern [6] aims at the separation of a minimal
functional core such as job submission, monitoring and data movement from
extended functionality providing extensibility. That means advanced workflow
features such as planning, scheduling strategies and QoS management should
be built on top of the kernel API. A micro-kernel pattern provides modularity
and extensibility which are fundamental properties for systems like a WfMS,
where a standard is not well defined yet and they must be able to adapt easily
to changing requirements.

3. Workflow Interoperability
As shown in Fig. 1 there are two kinds of interaction we would like to

investigate: the first one (A) is about translation between different workflow
description languages; the second one (B) is about synchronization between
different workflow engines. Both aspects are part of the interoperability inter-
face described in the WfMC’s reference model [7].

As previously said many workflow languages exist due to the lack of a strong
standard. However, translation from one language to another is often possible;
what is needed is a language parser, a model translator and a compiler, as
shown in the top layer of Fig. 1. Parsers have the responsibility to extract the
workflow semantics from a description, expressed using a workflow language.



284 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

As explained before, workflows can be described in terms of DAGs, Petri Nets,
π-Calculus or Activity Diagrams, albeit with different expressivity levels (e.g.
a DAG cannot describes an iteration of tasks). Conversion between these for-
malisms is provided by the model converter which represents the critical part of
such process. In fact is not always possible to rapresent one model in terms of
a different one; for example a Petri Net cannot always be converted in term of
a DAG. Finally compilers translate the model into a specific (usually different
from the initial) language description.

A debate exists around the best formalism to use for workflow description;
Petri Nets and π-Calculus are widely used for workflow modeling. As far as
both the formalisms are Turing-complete, the choice relies on the way these
models deal with workflow patterns. Workflow patterns are a collection of
well-known problems, and solutions, related to the support of process-oriented
applications [8]. According to [9], Petri Nets outperform other formalisms in
workflow description thanks to their formal semantics; also several analysis
techniques exist in order to determine the properties (correctness, deadlocks
and boundary) of a process design. As previously said, Petri Nets provide
mechanisms for model conversion. DAGs can be simply represented in terms
of Petri Nets; also π-Calculus based models (such as BPEL) can be translated
in terms of Petri Nets; the semantics of such translation is discussed in [11].
This choice is also compatible with the one done by other CoreGRID partners
like the Fraunhofer FIRST which introduced an XML based language called
GWorkflowDL [10] that allows the representation of abstract and concrete
workflows using Petri Nets. Fraunhofer FIRST also works, since several years,
on a workflow enactment engine called GWES in which we would like to
contribute with our work.

Compilers come into stage when a workflow model, or a part of it, needs
to be represented using a specific language. For example a part of a process,
usually a sub-workflow, can be transferred to a different WfMS; the internal
Petri Nets representation must be converted in a language description the third-
party WfMS understands. Unfortunately this kind of conversion is not always
possible, for example there is no explicit semantics for translating a Petri Net
in terms of π-Calculus formalism. A set of specific language compilers are
needed in order to achieve at compatibility with legacy WfMSs.

Interoperability as described in the WfMC’s reference model needs an engine
level synchronization mechanism identified with letter B in Fig. 1. A runtime
support for the interchange of various types of control information and transfer
of workflow relevant and/or application data between different WfMSs. Syn-
chronization can be useful even when several instances of the same workflow
engine want to collaborate; it can be useful when we want to use the WfMS as
distributed service to increase its performances.



A Practical Approach for a Workflow Management System 285

Figure 3. The WfMS deploy scenario 1

4. Implementation
The implementation will rely on the gLite middleware developed within the

EGEE project, due to its maturity and its large adoption. Job submission in
gLite is done by the Workload Management System (WMS) [12]; it comprises
a set of Grid middleware components responsible for the distribution and man-
agement of tasks across Grid resources. The core component of the WMS is
the Workload Manager (WM) whose purpose is to accept and satisfy requests
for job management, expressed via a ClassAd-based Job Description Language
(JDL). The WMS also supptorts the execution of single workflows expressed
as DAGs. Job monitoring in the WMS is provided by the Job Logging and
Bookkeeping Service (LB).

Many scientific workflows are expressed as JDL DAGs. As first step, our
purpose is to provide a mechanism that allows those legacy processes to take ad-
vantage of the WfMS. Thanks to a JDL parser the DAG model can be extracted
and then converted (using the model converter) into a Petri Net the WfMS can
execute. Subsequently we would like also to investigate the integration of the
BPEL workflow language providing a π-Calculus to Petri Net model translator
as proposed in [11].

Initially the WfMS will run as a separate process on a dedicated server, as
shown in Fig. 3. In this scenario the client sends the workflow description
to the WfMS server, which executes it submitting jobs to the the Grid. The
WfMS server also allows the client to monitor the workflow execution. This
kind of solution is simple to realize but has some disadvantages: as far as a
workflow could run for several days a failure in the WfMS server could cause
the loss of the entire process and data. To avoid that the server must provide
high reliability and recovery tools.

Later we will investigate an alternative solution that takes effort of the Grid
environment to run users’ workflows. In fact the Grid provides computational
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Figure 4. The WfMS deploy scenario 2

resources and mechanisms that helps failover management which makes run of
the WfMS as a Grid job a strategic choice. Grid is a batch system where users
send jobs and waits for their termination; a WfMS is also a sort of complex
job which can be submitted to the Grid within the workflow description. As
shown in Fig. 4, the client submits a workflow using the Grid middleware; a
new WfMS instance will start on a Grid node (selected by the WMS) and it will
use the Grid Abstraction Layer for job submission and monitoring.

As a consequence of these considerations, the WfMS must easily adapt to
environment changes. Therefore during the development stage we will not
focus on the system itself but in defining a set of basic functions, according
to the micro-kernel pattern, which the WfMS will rely on, making changes
simpler.

5. Conclusions and Future Work
In this paper we introduced a WfMS architecture with the intent to be com-

patible with the roadmap of the CoreGRID project. The main focus will be on
language conversion and interoperability between WfMSs using language and
model translators; Grid middleware independence will be satisfied thanks to a
layered architecture. The combination of these features makes it possible for
users to run their legacy workflows (usually written in different languages) on a
large set of computational resources. In fact, coordination of workflows among
several heterogeneous WfMSs is one of the main challenges in today WfMS
research.

The WfMS we are proposing is quite simple compared to other WfMSs like
Triana or GWES; for example it lacks QoS management, advanced planning
techniques and so on. However, one of the pourposes of this work is to intro-
duce a generic lightweight WfMS core with basic functions where advanced
functionalities can be easily and dynamically integrated thanks to the micro-
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kernel architecture. A WfMS for researchers who want to investigate high
level aspects related to workflows management without taking care of low level
problems such us job submission, data transfer and so on.
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Abstract In this paper, we propose an architecture of distributed data storage framework
that incorporates fault tolerance, mobility support, and security. Main goal of
our system is to provide equal opportunities for both connected and disconnected
clients. Consequence is that mutual exclusion may not be involved. Data storage
systems without mutual exclusion suffer from update and name conflicts. We
avoid the update conflicts using immutable data storage. Mutable data is provided
via either file versioning or Redo Logs. The name conflicts are automatically
resolved without user’s guidance, the file names are automatically changed to
non-conflicting names, the directories are represented implicitly and thus we
avoid conflict names connected to directories. Because the file names may be
changed by the system, each file version is assigned an immutable globally unique
identifier using which the file version can be accessed. Security model is based
on certificates and VOMS attributes. This system is suitable for use within Grid
VOs and it also supports services provided simultaneously to different VOs. Our
prototype implementation exhibits very favorable performance so that it could be
used as robust, secure, highly reliable and high performance Storage Elements.

Keywords: Distributed data storage, logistical networking, security, fault tolerance, discon-
nected operations
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1. Introduction
Large scale distributed systems consisting of thousands of nodes have serious

problems with failures. If such systems have a large number of components
(disks in disk arrays) and their total capacity is in the order of petabytes, then
according to [27], they face component failure once a day. Fault tolerance can be
achieved using some kind of redundancy. The redundancy can be achieved in a
number of ways, starting with replication that is space but not CPU consuming,
and ending with space conserving error correction codes [14] which require a
lot of CPU power and furthermore, data modification is a quite complex and
expensive operation. However, error correction codes are not commonly used
in large scale distributed systems because firstly they are expensive to update
and secondly, failure is the rule rather than an exception. In our approach, we
opted for replication, with data stored in multiple identical copies. It is CPU
conservative and it does not require extensive updating operations.

On the other hand, even simple a replication brings complexity into the archi-
tecture of distributed systems. Replication of read only data is trivial, whereas
replicating mutable data brings problems with the consistency of the replicas.
There are several approaches to dealing with replication and this consistency
problem. We can divide replication into a primary backup approach and a state
machines approach [24]. Primary backup approach refers to storing data on a
fixed replica and this fixed replica distributes data to the other replicas. In the
state machines approach data is stored directly to all replicas. It also means that
replication is client driven whereas primary backups can be both client driven
or server driven. The primary backup approach has a fundamental problem
with a single point of failure. If a primary copy (i.e., the node that spreads
data to the other replicas) is not accessible (e.g., due to network partitioning)
then data updating is not possible. The state machines approach has a problem
with data synchronization in network partitioning, as data updates in distinct
network partitions may lead to different data states on particular nodes—we call
this situation an update conflict. We can see that these two approaches repre-
sent a trade off between low availability (conflict avoidance) and low coherency
(conflict resolution). A combination of the state machine and primary backup
approaches is called the multiple-primary backup. In this case, we define a set
of primary servers that are kept consistent using the sate machines approach and
they collectively spread data to other replicas. This approach does not contain
a single point of failure and users do not need to upload data to all replicas. In
this case, consistency is limited similarly to the state machines approach.

All the above presented approaches may be combined with two other con-
cepts: pessimistic and optimistic replication [16]. Using pessimistic repli-
cation, data is spread synchronously to all replicas (and replicas are locked
meantime, i.e., we mutually exclude concurrent updates). Using optimistic
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replication, data is spread asynchronously to all replicas and no exclusion is
needed. Even these approaches represent yet more trade off between low avail-
ability (pessimistic replication) and low coherency (optimistic replication).

Data redundancy on storage servers is not a panacea for failures. When
network failure occurs between the client and the distributed storage system,
data redundancy on storage servers does not help. Therefore, we need to include
the clients into replication system where the clients act as partial replicas of the
storage servers. To completely conceal network failures, the client’s replica has
to provide all operations needed by the client, with the exception that only locally
satisfiable requests can be completed. The same functionality can be also used to
support a client’s mobility. Mobility (or disconnected operations support) refers
to the ability of a frequent connection and disconnection of the client and mainly
the ability to work with data even when no connection is available. An example
of such a system is CVS [3] where the users may check out files, disconnect
from the network, work with files, connect to the network and commit changes.
However, this mobility involves one fundamental problem connected to the
fact that there is no upper limit on the duration of the disconnection. Without
this limit, we cannot use any kind of mutual exclusion for conflict avoidance
because prospective locks are either potentially held forever or prematurely
released. Another challenge connected to mobility support is how to provide
equal opportunities for connected and disconnected clients (with the obvious
exception that disconnected clients cannot access arbitrary data but only data
marked as accessible in disconnected mode), e.g., the disconnected clients may
create new files and create new directories. These operations usually require
mutual exclusion to avoid the creation of multiple directory entries of the same
name. In this paper, we provide an approach to dealing with these problems
and we provide a distributed framework with unrestricted mobility support.

Our aim is to build a large scale distributed storage system that provides (1)
fault tolerance, i.e., it provides data replication, (2) mobility support, i.e., the
system provides disconnected operations and mainly offers equal opportunities
to both connected and disconnected clients, and (3) reasonable security model
with properly authenticated and authorized users. We expect that our work can
be highly usable in Grid environments as secure, robust, highly reliable and
high performance Storage Elements [6].

The rest of this paper is organized as follows. In the Section 2, we discuss the
design principles of our proposed distributed data storage framework. Section 3
describes some preliminary experiments. In the Section 4, we discuss related
work. Concluding remarks are given in Section 5.
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2. Design Principles
Our goal is to provide a storage architecture where data is highly available and

coherent. As we stated above, these two requirements are contradictory except
in one case—immutable data storage, where data can be written only once and
read many times (WORM, write once read many). For this reason, we have
chosen a storage substrate that provides Write Once Read Many semantics of
data storing. On this storage substrate, we aim to build a mutable data storage
system that preserves data availability and data coherency. This concept of
conflicts avoidance applies equally to mobility support as it does not involve
mutual exclusion.

2.1 Immutable Data Block Substrate
In essence, our storage framework works with files. Files are decomposed

into data blocks and metadata. The metadata contains references to data blocks
and basically represents the files, it is equivalent to the well known UNIX I-
node, the main difference being that data blocks are distributed across many
storage nodes instead of being stored on a local disk.

Replicating read only data blocks does not pose any problem. We can adopt
replication strategies mentioned in the introduction which would provide higher
availability and low data consistency: data inconsistency is an issue of concur-
rent updates of data. In dealing with immutable data, data consistency is not an
issue. We use the multiple-primary backup approach for data replication. This
means that users may upload a data block to any storage node and may request
the storage node to replicate the data block to another storage node.

Such an approach has two advantages. Firstly, the user does not need to
upload data blocks to all replicas which could overload his network connection
which can have lower bandwidth than network connection between storage
servers. Secondly, there is no single point of failure as a client may contact any
storage node. Because data blocks cannot be updated, the data coherency is
automatically provided. We enforce strict ordering of data and metadata, i.e.,
we add references in metadata to data blocks if the data blocks are completely
stored on storage servers. Consequently, a referenced data block (which may
be a replica of another data block) always exists on the storage server.

We need metadata replication for two reasons. The first is that the clients
can cache metadata so that the clients do not overload metadata servers and
the cached metadata is basically a replica of metadata. And the second is that
files are not accessible without metadata, thus non replicated metadata forms a
crucial single point of failure. However, replicating metadata is not without its
problems. We have stated that metadata contains references to data blocks. If we
replicate data blocks, we add more references to the corresponding metadata.
This means that creation (or deletion) of data blocks changes metadata, and
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consequently, the metadata is no longer read only which means that it cannot be
easily replicated. On the other hand, using simple consistency vectors1, we can
easily detect metadata changes and in particular all of the metadata can always
be merged into a single file. This is due to the fact that metadata can be seen as
a set of data blocks. We can merge metadata using a standard union operation
to all the sets. The only problem here is to distinguish between the addition
and removal of a data block, but this can be solved using the above mentioned
consistency vectors.

Using the principles outlined above, we are able to provide distributed and
replicated immutable data storage. While immutable storage is quite suitable
for distribution and replication, it is quite unsuitable for users. Therefore, we
show the way how to provide mutable distributed and replicated data storage
on top of immutable substrate.

2.2 Mutable Data Storage with an Immutable Data Block
Substrate

Providing a mutable file system on top of the immutable storage substrate
involves creating a new file whenever a block is changed. The new data blocks
must be added to the corresponding metadata which results in a change in the
metadata. In the previous subsection, we stated that mutable metadata does not
pose a problem, while the mutation of metadata is caused by addition or removal
of replicated data blocks. This property does not hold for mutations caused by
file updates. Concurrent updates of the same file may cause update conflicts
that may be difficult to resolve (user guidance may be required). Consequently,
immutable metadata is needed to avoid update conflicts (immutable metadata
with the exception of adding or removing data blocks replica). However, the
immutable metadata imposes immutability also on files.

For immutable metadata, we can use the same approach as for the read
only data blocks. Updating the file results in new metadata. Such approach
basically creates a form of file versioning. Each set of metadata for a particular
file corresponds to a particular file version. Taken together, we present the so
called versioned files that are mutable files consisting of immutable file versions.
File versions are represented by immutable metadata that references immutable
data blocks. Every update of a versioned file results in a new file version, i.e.,
in new data blocks and in new metadata. We can use a replication strategy that
provides high availability of data but must deal with update conflicts. Using such
a strategy, we provide high availability of data which avoids update conflicts

1We use the term consistency vectors instead of the standard term version vectors [13] as we use the term
version for file versioning. A mutable object is assigned a serial number. We increase the serial number
with each object modification and we also maintain the previous serial numbers. Using serial numbers of
the object and their history, we are easily able to detect changes in replicated objects.
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by read only data and we still provide mutable files. To avoid an explosion of
version numbers of versioned files, we use open-close semantics. This means
that the new file version is created only after the file is closed.

However, two problems still remain: (1) These principles do not deal with
name conflicts—i.e., conflicts caused by the creation of multiple directory en-
tries with the same name. We could use directory versioning which solves the
problem but this is characterized by an explosion of number of directory ver-
sions. Changing any directory entry increases a number of directory versions
up to the root directory. (2) Another problem is how to represent non-versioned
mutable files. A new file version is usually created after the file is closed which
makes it impossible to (read/write) share files between parallel applications.
Both problems are addressed in the following sections.

2.2.1 Name Conflicts. There are many approaches to dealing with name
conflicts but basically we can divide them into two groups: (1) conflict avoid-
ance and (2) conflict resolution. Name conflicts can be avoided by using either
a mutual exclusion or a read only approach. We have stated that versioning
is not suitable for directories due to versions explosion. On the other hand,
mutual exclusion is not suitable for mobility unless we impose an upper limit
to the duration of the disconnected state. Consequently, we must use one of the
conflict resolution strategies.

Name conflicts that arise from file name operation such as create and re-
name are solved using automatic renaming. Such a conflict is detected either
when the new name is created or when the client switchs from the discon-
nected mode to the connected mode. During this transition, data and meta-
data are synchronized with storage servers. If the client created a new file
name, it is created on the storage servers too and it may cause a name con-
flict. The conflicting name is automatically changed. For instance, three con-
flicting names testfile.txt are automatically resolved into two new names
testfile.txt#1 and testfile.txt#2 (one of the files keeps the original
conflicting name). The consequence of this approach is that the file name can-
not be used as an immutable file identifier. Thus, beside file name, each file
(and each file version) is assigned a globally unique identifier that can be used
to access the file instead of using the file name.

Replication of versioned files leads to special name conflicts. We distinguish
versions via numbering them and we use a deterministic algorithm to assign
file version numbers2. This algorithm runs at each replica (storage server) and
is local to that replica. It may happen (after concurrent updates of the same file
version) that two instances of the algorithm, each running on different replica,

2We increment the last version by one to get the new last version. The increment is made locally on the
replica thus it is possible that two or more replicas assign the same number to different file versions.
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assign the same version number to file versions with different content. We
solve such name conflict by using our replica synchronization algorithm [8].
This algorithm does not involve mutual exclusion which would cause the non-
availability of data or metadata, but it is still able to guarantee identical version
numbers for the same file version on all replicas.

Similarly, name conflicts may arise from directory name operations such as
create and rename. Also in this case, these conflicts are usually avoided using
mutual exclusion. We avoid directory name conflicts via implicit directory
representation. This means that we use a flat directory structure and a full path
is an attribute of a file. The downside of this approach lies in the absence of
authorization information bound to directories. Authorization information can
be associated with files only and the user cannot create directories exclusively
for himself. On the other hand, we believe that extended ACLs for files can
mostly substitute ACLs for directories, this is discussed in more details in
Section 2.4.

2.2.2 Non Versioned Mutable Files. Our system does not support mu-
table files in their natural way. We simulate mutable files via versioned files.
However, versioned files with open-close semantics cannot be shared between
applications that update the file in parallel. We represent mutable files as ver-
sioned files but with changed semantics. Within this changed semantics, the
new file version is created either (1) after predefined timeout, or (2) after pre-
defined amount of new data, or (3) after the mutable file is closed. It is clear
that using this extended semantics, the number of file versions rapidly grows.
To avoid an explosion of version numbers, we remove obsolete versions, i.e.,
file versions which are completely overwritten by newer versions.

If storage servers are reachable, the client checks before each read or write
operation whether a new file version is available. If it is available, the client
downloads and uses the new metadata (file version). Using this approach to-
gether with the extended access semantics described above, updates are distrib-
uted among other online clients within a predefined timeout.

To avoid disk space wastage caused by a potentially large number of file
versions and also due to the fact that file updates are usually small compared
to the overall size of the file, we store initial file versions and then we store
only updated records, i.e., the differences from the previous file version. This
approach is the well-known log structured file system approach that use Redo
Logs [15] which is a log of immutable update records. Each update record
contains information about the update, the offset in file, and the length of the
update.

However, using this concept of Redo Logs, we do not guarantee that the
updates are instantly visible to all other participants. And because the files are
mutable and we do not use mutual exclusion, update conflicts may arise after
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the concurrent modification of the same area of the same file. The conflicting
updates are resolved automatically so that one of conflicting updates prevails the
others are lost. We do not explicitly specify which update prevails and which
one is lost. Neither do we guarantee that subsequent updates have the same
order for all participants except two cases. The first case is, if all subsequent
updates have been distributed in the same way through the network and the
second is if a time period between two subsequent updates is higher than the
time period required to distribute updates between all participants. If such
behavior is not acceptable then the application level mutual exclusion should
be used.

2.3 Metadata Handling
We store metadata on metadata servers. Metadata can be replicated and repli-

cation is done per versioned file (or its equivalent—non versioned mutable file).
Replication of metadata is driven by a dynamically elected replication coordi-
nator which is responsible for coordinating the replication for a single update
of a single file. Further updates and different files can be coordinated by an-
other coordinator. Replication runs asynchronously to updates. Our replication
algorithm can be found in [8].

Metadata servers are distributed across a network. Metadata is spread among
metadata servers using virtual distributed search tree P-Grid [1]. We have
chosen this peer-to-peer system because it is possible for the clients to gain
routing tables from the metadata servers and from which the clients are able
to predict where the metadata is stored. This prediction is precise if the set of
metadata is stable (without any metadata server connects or disconnects) which
should be the case most of the time.

As stated above, we do not explicitly represent directories. Path names are
an attribute of files but we use path and file name as a key to the P-Grid system
to find file location. This approach is problematic for directory content listing
because files of a single directory may be spread among many metadata servers.
Thus, for directory listing, the client must contact all metadata servers. Solving
this problem is one of our future tasks.

2.4 Security
We can say that file systems internally decompose files into data and meta-

data. In terms of UNIX-like file systems, we have I-nodes (metadata) and data
blocks that are referenced by these I-nodes. Assuming that a user does not have
direct access to raw storage media, the user cannot access data without knowing
a particular I-node, therefore access control is usually made at this level. Once
users are allowed to access the I-node, they are then granted access to the data.
However, if we split metadata and data into two independent services, we must
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require access control verification at both services. We then face the problem
of how to force a user to pass access control on both services in a defined order
and how to verify that both services have granted or denied access.

The issues have been reduced to the following problems. We are given a
set of services. We need to force a client to obtain a token from the services
in a defined order given by service providers. We require that no service is
skipped by the client and that the client cannot skip a service using an old
token. Further, we require that the verification of a token is always local and
no service is required to contact a third party during the verification process.
The second problem is how to provide cacheable time limited metadata to the
clients. The metadata manager issues metadata to the client, so the client may
cache metadata for an unlimited period, potentially, which makes authorization
irrevocable. Since the size of the metadata is not insignificant, the creation of
a signature can take significant period of time. Signed metadata must be valid
only to the particular user and only for a specified time period. Signature must
be certifiable offline. The solution to these problems is presented in [9]. This
solution extends network storage stacks from logistical networking so that each
part of the network storage stacks authenticates and authorizes the user. User
authentication is based on PKI, authorization is based on ACLs.

As we do not explicitly represent directories, we cannot bind ACLs with
them. ACLs bound to directories basically serve as shortcuts for setting appro-
priate ACLs to individual files. For instance, we may deny entry to a directory
instead of denying access to the individual files. Thus, we can simulate direc-
tory ACLs by file ACLs except in two cases: (1) we cannot deny the creation
of new files in a directory and (2) we cannot hide the subdirectories (which is
usually done by denying directory listing). Neither we can deny entry into a
directory but if we deny access to all files and set all files to be invisible (both
possible using an appropriate file ACL) in a subtree beginning in this directory,
the result is the same. Taken together, we believe that the inability to bind ACLs
with directory does not impose a real problem.

3. Experiments
Our prototype implementation utilizes the IBP protocol from the Logisti-

cal Networking concept [2]. Using the IBP protocol, we build an immutable
data blocks storage substrate. We are using our own implementation of the
components of the Logistical Networking with an extended security model as
described in [9] where also performance tests related to the extensions can be
found. The IBP servers are implemented in C language. The IBP servers allow
to store data blocks and allow modification of these data blocks but the latter
feature is not utilized in our system. The metadata (called eXnodes in the Lo-
gistical Networking) is represented by XML files. The metadata is stored at
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metadata managers which are implemented in Java language. The client side
of both IBP and metadata interfaces is implemented also in Java language.

Our experiments have been focused on file storage and file retrieval and their
performance on high speed networks. We have used a single client equipped
with 10 Gbps fibre optics network card, 8 GB RAM, and two dual-core Intel
Pentium Xeon processors. We have used eight storage servers, each equipped
with 1 Gbps metallic network card, 8 GB RAM, and two dual-core Intel Pentium
Xeon processors. The storage servers use disk array consisting of two 320 GB
SAS disks organized as software RAID 0. We are able to store data into a
single file at 139 MB/sec (1112 Mbps), and to read data from a single file at
178 MB/sec (1424 Mbps). Using iperf [10] network performance tool, we are
able to achieve 750 Mbps between the client and any storage server using a single
TCP stream. This limited transfer rate is caused by the network interface card
at storage servers. However, using multiple TCP streams simultaneously from
the client to all the storage servers, we can achieve aggregate rate of 5.6 Gbps.
This special setup has been used to demonstrate that our system allows to utilize
extensively the storage servers in parallel.

Table 1. A single file upload and download transfer rate and RAM and CPU usage. The usage
and transfer rate is measured at the client.

Block Size File Size Transfer Rate RAM CPU

32 MB 156 GB 3656 Mb/sec down 756 MB 90%

3392 Mb/sec up

2 MB 9.7 GB 2488 Mb/sec down 90 MB 50%

2000 Mb/sec up

We did several tests to evaluate our prototype implementation. The first
simple tests evaluated overall performance of storing and retrieving large files
from and to client’s memory only to eliminate client’s local disk performance.
We evaluated transfer speed for file upload and download, CPU usage, and
RAM usage for two data block sizes: 2 MB and 32 MB. We expect that the
latter size will likely be used. Each file comprised 10,000 data blocks. The
results can be seen in Table 1. We can see that using 32 MB blocks, we are able
to saturate available network bandwidth up to 65% (for download) and up to
60% (for upload). Using 2 MB blocks the bandwidth saturation is lower due
to higher overhead when manipulating smaller data blocks. We can also see
that larger data blocks require a lot of memory. To achieve such high transfer
rates, the client must allocate at least two data blocks for each storage server,
thus 512 MB is occupied by data blocks cache for the 32 MB data blocks and
32 MB for the 2 MB data blocks. Rest of the memory is occupied by the Java
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application itself. In the case of 2 MB data blocks, we can see lower CPU usage
because the smaller blocks require more messages to be sent. This is because
CPU is idle during the message sending process.

We stated that mutable files are represented by the Redo Log. It may happen
that the Redo Log size is not negligible. The whole Redo Log is traversed and
processed when the file is opened. Therefore, we have evaluated relation of the
Redo Log size and the duration of file opening. The results can be found in
Figure 1. We can see that up to 1,000 update records, the duration of file open
is negligible. Assuming 32 MB blocks, 32 GB file is opened within 1 second.
There is optimization possible as we could merge individual update records into
a bigger single update record. This optimization is left as a future work.

Figure 1. Duration of the file open operation for varying number of update records in the redo
log.

We have not evaluated latency of replicated data blocks because the storage
servers have relatively slow network connection to each other compared to the
connection to the client. Thus data replication should be originated directly
from the client and under such conditions, storing of two replicas of a file takes
exactly once more time than a single replica of the file.

On the other hand, metadata replication is handled by our distributed al-
gorithm and for this reason, we evaluated performance of distribution of the
metadata updates. The results can be found in Figure 2. We can see that our
algorithm scales well and that distribution of the metadata updates takes about
10% of time of data distribution. The distribution process runs asynchronously
to update operation. The Figure illustrates time limit within which the metadata
updates are distributed to all the replicas.
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Figure 2. Latency of file update distribution among specified number of replicas.

Our prototype implementation has shown feasibility of our system. Our
preliminary experiments have manifested that our system provides high per-
formance distributed data storage. The clients can access the storage servers
in parallel to utilize available network bandwidth. The experiments have also
shown that some parts of the system will need optimization in future, such as
opening of mutable files consisting of a large number of the update records.

4. Related Work
There exist many different distributed storage systems incorporating differ-

ent approaches to the data storage problem. There are standard distributed
file systems with POSIX access semantics such as AFS [18], NFSv4 [20],
GPFS [19], Lustre [4] which, however, do not contain support for mobility
and their support for replication is very limited (AFS—read only replication,
NFSv4—incomplete specification, no complete implementation, GPFS—fixed
number of replicas, Lustre—no replication of metadata servers).

The Coda [17] file system was one of the first file systems that presented
disconnected operations. Compared to AFS, the Coda also provides read write
optimistic replication. Replication granularity is per volume rather than per
file. Volume is a set of files belonging to particular directory subtree. Coda
also distinguishes between connected and disconnected mode, and it reports
conflicting updates to the user. The security of the Coda file system is based on
user IDs and group IDs.
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In addition to these distributed file systems there exist experimental dis-
tributed storage systems which have either POSIX access semantics or access
via special API.

Ceph [25] file system is replicated, scalable, and high performance dis-
tributed file system. It decomposes files into data blocks and metadata. Data
blocks are stored to object storage devices (OSD). Data blocks are organized into
placement groups and using CRUSH (Controlled Replication Under Scalable
Hashing [26]) are mapped to OSDs. Compared to our system, this approach has
the disadvantage, in that if we add more OSDs, some of the existing data blocks
may be required to migrate to the new OSDs. Replication uses a primary copy
approach using a monitor which coordinates the election of the primary copy
holder. The monitor impose a single point of failure, on the other hand a monitor
is not required if the primary copy holder is reachable. Ceph does not support
mobility or file versioning. Security is based on time limited capabilities issued
and signed by metadata servers.

Ivy [12] is a read write peer-to-peer file system. It uses DHash [5] peer-to-
peer block storage substrate, and all data is stored as a value into a distributed
hash using data checksum as its key. DHash provides replication of immutable
data blocks. A mutable file system is provided via a log that forms a linked
list of immutable log records. The user processes his own log and all publicly
available logs and searches for the most recent changes. Compared to our
system, Ivy provides only open-close access semantics. It does not explicitly
support file versioning but it supports snapshots. It does not support mobility.

Eliot [21] is another peer-to-peer file system built on immutable peer-to-peer
storage. It uses Charles [22] reliable and fault tolerant block storage substrate.
But it uses only a single mutable metadata service which degrades Eliot fault
tolerance.

The large scale storage system, OceanStore [11], provides file versioning
(old versions are read only), disconnected operations and replication. However,
performance is limited due to slow file lookup and also due to protocols for the
Byzantine agreement. Compared to our system, the client is not allowed to
predict data location and speed up metadata manipulation.

The Google file system [7] is an application level replicated distributed file
system used for the well known Google search engine. Its architecture is based
on a single master server (which imposes a single point of failure) and multiple
chunk servers. The architecture is optimized for fast reading and appending
files. Compared to our system, it does not provide file versioning or mobility
support. Our system also supports replication of our equivalent to the Google’s
master server.

The L-Store [23] application level distributed file system closely resembles
our distributed data storage system. It is also based on IBP [2] protocol. It
supports replication of both data and metadata. Compared to our system, it
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does not provide file versioning or mobility support. Its security model requires
online communication between a metadata server and an IBP server which
makes it less robust compared to our security model.

5. Conclusions
We have designed a reliable, fault tolerant, and secure framework for distrib-

uted data storage with mobility support. The framework offers equal opportu-
nities for both connected and disconnected clients which requires the system
not to involve mutual exclusion. Systems without mutual exclusion suffer from
update and name conflicts. We avoid the update conflicts using immutable data
storage. Mutable data is provided via either file versioning or Redo Logs. The
name conflicts are automatically resolved without manual guidance of a user,
the file names are automatically changed to non-conflicting names, the direc-
tories are represented implicitly. Thus we avoid conflicts in directory naming.
Security model is based on certificates and VOMS attributes. This makes the
system suitable for use within Grid environments with the VO concept and it
also supports services provided simultaneously to different VOs.

We have designed and implemented a prototype implementation and per-
formed preliminary performance evaluation. This evaluation shows that even
the prototype implementation exhibits very favorable performance so that it can
be used as secure and high performance Storage Element service.
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Abstract The paper describes the integration of a low-level checkpointing package with the
GRID computing environment. The presented integration provides both fault-
tolerant and job-migration facilities. The integration has been performed as
proof-of-concept implementation of some concepts of Grid Checkpointing Ar-
chitecture (GCA) that is being developed within the CoreGRID project. The in-
dividual components constituting the proof-of-concept implementation and their
mutual relationships are presented. The described integration of a low-level
checkpointing package with the GRID environment allows the Grid Resource
Broker to recover user’s jobs in case of failure. Thanks to the migration facilities
the job can be recovered even if the physical node that originally hosted the job
is no longer available.
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1. Introduction
One of the most common benefits of checkpointing technology is the high-

level of fault tolerance offered by the environments that can take advantage
of that technology. In case of any failure the checkpointed application can
be recovered to the point where the last checkpoint was taken. Additionally,
the checkpointing technology can serve as a basis for the implementation of
a job migration mechanism which in turn can be utilized to improve the load-
balancing and job preemption capabilities. The job migration can also be useful
when after failure the original physical node is no more available . To date,
there have been a few low-level checkpointing packages [1] [2] and each of
the checkpointing packages offers different functionality and interface. Be-
cause of technical issues the checkpointing packages impose some limitations
on applications that are to be checkpointed. The support for distributed appli-
cations is especially difficult - a significant problem is how to make consistent
checkpoint of multiple cooperating processes and simultaneously not to lose
the just in-transit messages. Thus, the conclusions are the following: so far not
every application can be checkpointed, if one checkpointing package is able
to deal with the given application, another package may not. Even if there
are more than one checkpointing packages that are able to deal with the given
application, the interfaces to the checkpointing functionality are likely to differ.
Consequently, due to these features the integration of low-level checkpointing
packages with the GRIDs is a difficult and not yet accomplished task.

Nevertheless, the possibility of achieving a higher level of fault-tolerance of
the computing systems together with the introduction of unique features such
as jobs migration makes the checkpointing technology a very attractive tech-
nique from the point of view of the GRID environment. Generally, there are
two ways of introducing the checkpointing functionality to the GRID environ-
ment - it is either putting all functionality in the GRID application, so it is up
to the application to store and restore its state [15], or taking some existing
checkpointing packages and designing a service that will expose its function-
ality to the GRID. In our work we focus on the second approach, therefore,
just to make the checkpointing packages available to the GRID environment
we work on the Grid Checkpointing Architecture [3] [4] which aims to de-
fine novel, GRID-embedded components and associated design patterns that
will allow the GRIDs to utilize a variety of the existing and future low-level
checkpointing mechanisms in a conscious way.

To better understand the domain that GCA is dealing with and to check the
feasibility of the developed concepts we are preparing a series of proof-of-
concept environments that implement the different parts of GCA. In the paper
we are going to present one of such proof-of-concept environments. The pre-
sented environment was prepared to prove the possibility of integrating the
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low-level checkpointing package with the Local Resource Manager and with
the Grid Resource Broker. The involved individual components and the pro-
posed architecture are described adequately in section 2 and 3. Relying upon
the architecture described in section 3, the two scenarios of experiments have
been realized. The user-driven and workflow-driven scenarios are described
in section 4. The proposition of further extensions to the presented concept
are briefly mentioned in section 5. The final conclusions that arise from the
performed tests are presented in section 6.

The described integration has been prepared as derivative of another integra-
tion presented at CoreGRID Industrial Conference 2006 in Sophia-Antipolis in
France [14] in the form of a live Demo Case. Comparing to that Demo Case
in the integration presented in this paper, the technology used to provide user
interface has been changed and the job migration capability has been added.

2. Involved components
The main functional components involved in the integration are: the low-

level checkpointer, the Execute Manager, the Local Resource Manager and the
Grid Resource Broker. This section provides a short overview of the imple-
mentations of the actual components used during the integration. The mutual
relations between these components and their role within the considered proof-
of-concept environment are described in the next section.

2.1 Low-level checkpointer - AltixC/R
The low-level checkpointer utilized during the integration is AltixC/R [6] [7].

It is a kernel-level checkpointing package designed by PSNC for Altix systems
equipped with IA64 processors and running under the SGI ProPack environment
(i.e. Linux-based environment prepared by SGI). The most recent version works
with the Linux kernel 2.6. The required kernel-level functionality is provided in
the form of a dynamically loaded kernel module, so it is easy to use and install.
Contrary to some non kernel-level checkpointers, there is no assumption on the
availability of source codes or the programming tools that were used to write the
programs to be checkpointed. The package is able to checkpoint multi-process
and multi-threaded programs that communicate through the signals, shared files
or the System V IPC objects. A unique feature of the package is virtualization
of some global system keys and identifiers (for example, PIDs are virtualized).
Thanks to that, when the program is recovered, it is cheated that the identifiers
have not changed, even though due to technological reasons, they are very likely
to have changed.
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2.2 Execution Manager - WS GRAM
The Execution Manager is meant to provide the Grid Resource Broker with

the uniform interface to a variety of underlying Computing Nodes. Thanks to
that the interface to different types of clusters (which are accessed through the
Local Resources Managers) and even to single computing machines is similar
and well abstracted in the form of the Execution Manager imposed protocol. In
the considered integration we have used the WS GRAM [8] as the Execution
Manager. WS-GRAM stands for Web Services Grid Resource Allocation and
Management and is a part of the Globus Toolkit. According to the Globus
Toolkit website [9], the WS GRAM component of the toolkit comprises a set
of WSRF-compliant Web Services [10] to locate, submit, monitor, and cancel
jobs on the GRID computing resources.

2.3 Local Resource Manager - Torque
The component that provides access to local computing resources is named

Local Resource Manager (LRM). The actual LRM used in the presented integra-
tion is Torque [11] which is an open source implementation of the manager that
provides control over jobs distributed among Computing Nodes of the cluster.
In the simplest scenario the cluster together with management infrastructure
can be scaled down to one node.

2.4 Grid Resource Broker - GRMS
The Grid Resource Broker is a component that is able to coordinate re-

sources allocation and job submissions in the GRID environment. This is also
the component that the end users interact with in order to submit, monitor and
control their jobs. The user interface to the Grid Resource Broker can vary from
the specialized GUI or the CLI tools to the WWW or the WAP-based pages.
The Grid Resource Broker used in the presented integration is the Grid Re-
source Management Service (GRMS) [12] which is a part of the GRIDGE Grid
Toolkit [13] being a set of integrated, ready to use GRID services. The GRMS
supports building and deploying resource management systems for large scale
distributed computing infrastructures. Comparing to other similar products, a
unique feature of GRMS is the ability to deal with jobs defined as a set of tasks
with precedence relationships where the execution of a child task can be trig-
gered by any status of a parent task. It is noteworthy that during the integration
activity we have experienced an active support from the GRMS development
team.
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2.5 User Interface - GRMS command line interface and
GridSphere portal interface

As it was stated above, modern Grid Resource Brokers can cooperate with
a variety of user interfaces. The two used in the described integration are the
GridSphere portal interface [16] and the GRMS command line interface. The
GridSphere is a portal framework that allows developing portlets providing
interface to GRID infrastructure. The GRMS command line interface provides
the end user with a set of commands to interact with the GRMS resource broker.
Both the GRMS resource broker and GRMS command line interface are closely
connected and developed by the same development team.

2.6 Images sharing - NFS
In the case of jobs migration the mechanism for exchanging the checkpoint

images between nodes is needed. In the considered proof-of-concept envi-
ronment, the Network File System (NFS) together with smart images naming
policy has been used to provide access to the images on different nodes.

Figure 1. Architecture

3. Testbed architecture details
The outline of the architecture of the described proof-of-concept environment

is depicted in Figure 1. The components presented there correspond to the
ones introduced in section 2, but in some cases they are presented together
with internal subcomponents that are not mentioned in section 2. The figure
has been divided into four parts that represent the division of the architecture
from the deployment point of view. The next part of the section describes the
architecture. First, the lowest level components are presented and then the
higher level ones.

From the point of view of the presented architecture, the most low-level
component is NFS to which the checkpoint images are saved and from which the
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images are fetched during the recovery stage. With the help of NFS technology,
the shared disk space that constitutes the images repository is mounted on each
node to the same mount point. Therefore, thanks to bright images naming
policy each node is able to locate and access the desired image if it is required
(for example during the recovery stage).

The component that in Figure 1 takes advantages of the NFS technology
is AltixC/R checkpointing package. The checkpointing package provides dy-
namically loaded kernel modules and the command line tools that allow for
taking checkpoints and recovering users’ jobs. The AltixC/R package has to be
deployed on each Computing Node on which the checkpointing functionality
should be available. The AltixC/R assumes that the checkpointing functionality
is exposed only to locally logged users, so it does not expose any interface to
the GRID or Cluster environment.

In Figure 1 it is shown that the jobs are submitted to the Computing Node
through the TORQUE LRM. The TORQUE has the support for low-level
checkpointers but by default the support is disabled. To enable the support the
TORQUE has to be recompiled and the following line has to be added to the
src/include/pbs config.h file.:

#define MOM CHECKPOINT 1

The TORQUE allows for employing the third-party checkpointing pack-
ages by means of special checkpointing script and additional arguments passed
to the qsub1 command. The checkpointing script has to be customized for
each checkpointing package by a person who has adequate knowledge about
the checkpointer, the TORQUE itself and the way the TORQUE executes the
script. The qsub command of syntax qsub –c c=<time> <PBS batch script>
submits the job defined within the <PBS batch script> file to the cluster. The
arguments –c c=<time> determine that every <time> minutes the check-
pointing script will be executed. The assumption is that the checkpointing
script is available on the Computing Node to which the job will be submitted.
The path to the script is defined within the TORQUE-related configuration
files of the Computing Nodes. For example, in our testing environment the
file /var/spool/torque/mom priv/config that resides on the Computing Node
contains the following line that indicates the checkpointing script location.:

$checkpoint script home/fujisan/bin/mom-checkpoint.sh

The most important arguments passed to the checkpointing script are:

1qsub command submits the user job to the cluster to be executed, what job will be executed is defined within
the user provided PBS batch script.
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PID of the PBS batch script that represents the job that is to be checkpointed,
JOB ID assigned by the TORQUE to the job and Unix like USER ID of the
owner of that job. These arguments are available in the checkpointing script
through the $1, $2 and $3 variables. These variables and knowledge about
locally available low-level checkpointing package should be enough to write
the checkpointing script that successfully takes checkpoints of the user’s job.

To resume a job in this environment, the user has to prepare the dedicated
PBS batch script and resubmit the job. The resubmitted PBS batch script is
finally executed on the assigned Computing Node. The assumption is that this
time, instead of executing the user’s job from the beginning, the PBS batch
script uses the locally available checkpointing package to recover the job. Of
course, the image of the being recovered job has to be available. In the presented
environment the filesystem used to store the images was exported using the NFS
and is mounted at the same point on each node. The exact path and the name
of the image can be devised relying on the assumed image naming policy. Our
naming policy uses the job ID to assemble the image name, therefore in the same
directory multiple images of different jobs were placed. The mentioned policy
resulted in only one image for each running job, so only the most recent image
of the checkpointed was available. If the checkpointing package is installed
on all nodes within the TORQUE managed cluster, the job will be recovered
even if the originally utilized node is not available (for example, because of
failure). The TORQUE is not aware that a given PBS batch script recovers a
job. The recovering PBS batch script is treated as any others. It is submitted
to any currently available node according to the local scheduling policy. The
knowledge how to recover the given job is embedded into the PBS batch script.
It certainly uses locally available checkpointing package and NFS to recover
the user job. In the described environment all the user actually has to know to
write the recovering PBS batch script is the path to the "recover" command and
to the checkpoint image (to establish the latter, knowledge of images naming
policy is also required).

At this point the local resource manager is able to checkpoint and to recover
jobs that are submitted by users directly to the TORQUE. However, as it is
shown in Figure 1, the cluster managed by TORQUE is further exposed to
the GRID environment. The element that links the cluster with the GRID is
WS GRAM which is able to transform the SOAP messages to the dynamically
generated PBS batch scripts and submit them to TORQUE. The part of the WS
GRAM that is responsible for preparing and submitting the PBS batch script
is the PBS Job Manager. The problem is that by default the PBS Job Manager
is not able to submit the job with the additional "-c c=<time>" parameter
and cannot prepare the PBS batch script that recovers the job using locally
available checkpointing package. Therefore, to achieve this functionality the
PBS Job Manager had to be adjusted. The PBS Job Manager is written in the
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Perl language and the source file resides in the pbs.pm file that is a part of the
Globus Toolkit. The WS GRAM accepts job executing requests in the form
of job description defined as special xml file. Even though the format of this
file does not contain any checkpointing-related elements explicitly, it allows
for customizing the job description through the <extensions> xml element.
So, we defined the following xml elements as the <extension>’s children:
<ckpt id>, <checkpointable>, <period>, <recovery> and <grms id>. The
detailed description of these elements is omitted. However, as the adjusted
PBS Job Manager is passed the whole job descriptor, it extracts from it the
newly defined checkpointing-related elements and relying on them prepares
the adequate PBS batch script.

The next crucial element in Figure 1 is GRMS. The GRMS is the Grid Re-
source Broker which, relying on the request received from the user, finds the
adequate Computing Resource and submits the user’s job to it. The GRMS sub-
mits the job to the Computing Resource with the help of the WS GRAM service.
In order to submit the job, the GRMS prepares the aforementioned job descrip-
tor and sends it to the selected WS GRAM. In the described proof-of-concept
environment the GRMS has been extended with the ability to prepare job de-
scriptors that contain the previously defined checkpointing-related elements.
As the GRMS itself accepts its own xml job descriptors provided by the users,
this descriptor has also been extended with the additional checkpointing-related
elements.

As it is shown in Figure 1, we used two kinds of user interface to test the
environment. The first type of interface is the GRMS provided command line
interface which allowed us to submit jobs to the GRID and to indicate that
the given jobs have to be executed on Computing Resource equipped with the
checkpointing functionality. The second, more convenient kind of interface, is
the GridSphere-based web site (see Figure 2). The engines of both kinds of
interfaces communicate with the GRMS resource broker with the help of the
SOAP protocol.

4. Demo scenario
Relying on the proof-of-concept environment described in the previous sec-

tion, we have performed a set of tests and experiments. The two of them are
described in this section. The outline of both scenarios is similar. The user
submits to the GRID a POV-Ray based job by means of a command line or
GridSphere-derived interface. After the Grid Resource Broker allocates an ap-
propriate Computing Resource and submits the job to it, failure of the comput-
ing infrastructure is simulated. Next, depending on the scenario, user-driven
or workflow-driven recovery action is performed. The scenarios utilize the
POV-Ray application in the form of the example user’s job due to the following
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Figure 2. Part of GridSphere GUI

reasons: it can be checkpointed and recovered with the help of AltixC/R check-
pointing package2, it is a time consuming, computing demanding application
and the intermediate and final results are easily readable for people.

4.1 User-driven recovery scenario
Using the term "user-driven recovery scenario", we mean that when the

failure occurs, the recovery action has to be triggered by the user and not by the
system itself. The scenario begins with the user dealing with the GridSphere
or command line interface.

In order to submit the job to the GRID, first the user, with the help of the
favorite plain text editor (in case of CLI) or with the help of the web-based
wizard (in the case of GridSphere portal) prepares a job descriptor that corre-
sponds to the being submitted job. The crucial elements of the descriptor are
the following: location of the POV-Ray application, the input parameters and
files, and where the result files are to be stored. Additionally, to utilize the
checkpointing technology, the descriptor has to contain elements implying that

2Each checkpointing package is able to checkpoint only finished set of applications.
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the job is to be checkpointed and defining the period of time in which the next
checkpoints should be taken.

When all parameters are set, the user simply has to click the "Submit job"
button to submit the job to the GRID (or invokes the grms-client command with
the appropriate set of arguments, in the case of the CLI). From now on, the
job is managed by the GRMS resource broker which is in charge of finding the
Computing Resource that fulfills all the job’s requirements (including the one
related to the checkpointing functionality). Just after the job is submitted, both
kinds of user interfaces present to the user the "job ID" that has been assigned
to the job (it will be helpful during the recovery stage). The GRMS resource
broker finally submits the job to the adequate Computing Resource (i.e. to the
WS GRAM component). Of course, the checkpointing-related elements of the
job descriptor are forwarded to the WS GRAM. Thanks to that, the modified
PBS Job Manager which is a part of the WS GRAM can submit the job to the
TORQUE LRM in a way that activates the periodic checkpoints mechanism
(the arguments –c c=<period> are added to the qsub command). At last,
the TORQUE executes the job on any available Computing Node and GRMS
assigns the ACTIVE state to the job. The current job state can be obtained
through the GRMS command line or through the GridSphere portal interface.

The next step of the test scenario is failure simulation. It can be done in a few
ways. However, we just find out the Computing Node where the job is executed
and then kill the process that constitutes the job. When the job fails, its state
changes into FAILED, from the GRMS point of view. If the user notices this
change (for example, in the web interface) he or she would like to recover the
job to the point where the last checkpoint was taken. To do so, the failed job
has to be submitted again but additional elements in the job descriptor have to
be specified. The new elements in the job descriptor indicate that the job is
to be recovered instead of being executed from the beginning, and they point
out the original "job ID" of the job. The job descriptor is submitted to the
GRMS resource manager in a usual way. Relying on above-mentioned new job
descriptor elements, the GRMS resource manager submits the job to the same
Computing Resource (i.e. to WS GRAM) that handled the original job. As the
additional job descriptor elements are also passed to the PBS Job Manager, it
dynamically generates the PBS batch script that utilizing the previous "job ID"
and with the use of checkpointing package and NFS is able to recover the job
to the point of the last checkpoint. Thanks to NFS, shared home directories and
smart image path naming policy, the job can be successfully recovered, even if
TORQUE assigns to it a Computing Node which is different from the one used
originally.
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4.2 Workflow driven recovery scenario
The workflow driven scenario is even more attractive because the job failures

are automatically detected and handled by the GRMS. This functionality has
been achieved thanks to the GRMS feature that allows for managing complex
workflows. The workflow consists of a number of tasks and an individual task
can be triggered by status changes of other tasks. The tasks constituting the
workflow and control flow between them, which is in fact not very complicated
one, is depicted in Figure 3.

Figure 3. Auto-recovery workflow

When the state of the task under which the POV-Ray is running changes to
FAILED, the workflow manager automatically triggers the task that recovers
the failed job. The drawback of this approach is a complex job descriptor which
has to be prepared by the user to define individual tasks in the workflow and
their mutual relationships.

When the job descriptor is ready, the job is submitted to the GRMS resource
broker in the same way it was done in the previous scenario. After the job
achieves the ACTIVE state, the failure is simulated exactly the way it was done
in the previous case in the user-driven scenario. However, this time the failure
simulation does not crash the whole job. The GRMS resource broker detects
the failure and automatically submits the request that recovers the job to the
WS GRAM. When the recovered job finally finishes, the scenario results can be
validated simply by displaying the image produced by the POV-Ray application.

5. Further work
The work described in the paper focuses on improving fault-tolerance and

load-balancing level of GRID with the help of low-level checkpointing pack-
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ages. The presented migration facilities have been implemented on the Local
Resource Manager level. In such environment the job can migrate in the area
of a single cluster. The future work encompasses extension of the presented
proof-of-concept environment with the migration performed between clusters.
In other words, the extended version of the environment assumes that the GRMS
resource broker is able to recover the job even if, due to a failure, the previously
used WS GRAM is unusable. Therefore the significant component of the next
proof-of-concept environment will be the data management service that will
allow for sharing the checkpoint images between distant clusters.

6. Conclusions
The proof-of-concept environment described in the paper has been developed

as a part of the work on GCA [3] [4]. Nevertheless, the presented environment
is not the implementation of GCA as such. The environment has been utilized
to check the feasibility of the ideas that GCA is based on. So far, the results
of the tests and experiments that have been performed are promising and prove
the sanity of the most recent GCA assumptions. In particular, the possibility
of conscious interacting of the Grid Resource Broker with the Computing Re-
source equipped with a low-level checkpointing package has been confirmed.
It has also been proved that the knowledge of the given low-level checkpointing
package allows for providing scripts or programs that generalize the low-level
checkpointing interface to the more abstract form exposed to the higher layers of
the system. Simultaneously, the described proof-of-concept environment was
able to improve the fault-tolerance level of the GRID computing environment.
Even though failures were simulated, the workflow- and user-driven recovery
procedures were able to recover the computing process to the point of the most
recent checkpoint. Thanks to that, no significant computing cycles wasting took
place and potential time or CPU cycles limitations imposed on the computing
process can be fulfilled.
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1. Introduction
A portion of todays applications used in High-Performance and Grid envi-
ronments belongs to the class of batch-oriented programs with command-line
interfaces. They typically have long lifecycles that surpass multiple genera-
tions of Grid and Service environments. Service Oriented Architectures and
Web services became a widely accepted and mature paradigm for designing
loosely-coupled large-scale distributed systems and can hide heterogeneity of
underlying resources. As re-implementation of application codes is frequently
too expensive in time and cost, their (semi-)automatic adaptation and migration
to newer environments is of paramount importance. We suggest an approach
with tailor-made wrapper services customized to each application. Mapping
the functionality of applications to wrapper services requires not only to map
input and output arguments, messages and files but also to ensure that the ap-
plications behavior is well-reflected. Occurrence of faults needs to be detected
and diagnosed and then propagated via the services interface, such that clients
may react appropriately to prevent larger system failures. In order to recover
from failures in many cases their root causes such as unsatisfied dependencies,
deployment or configuration problems, expired credentials, quota limits or disk
crashes have to be identified. With increasing complexity of Grids - growing in
size and heterogeneity - this tasks becomes increasingly difficult. Several ab-
straction layers conveniently shield the user from lower level issues. However
these layers also hide important information required for fault diagnosis. Users
or support staff are forced to drill down through layers for tracking possible
causes. For larger number of failures it then quickly becomes impractical and
time-expensive to manually investigate on individual causes by hand.

Related Work. Monitoring and failure detection systems [10, 12, 22] are
important Grid components however they discriminate faults no further than
into generic task-crashes and per-task exceptions. On the other hand a vari-
ety of systems has been suggested for building fault tolerant applications and
middleware [11, 14] which could benefit from accurate and detailed diagnosis
of faults and their causes. Common approaches for fault diagnosis start from
formal system specifications [1, 13, 19] or from its source code [4, 15] to derive
test cases. Instead neither source code availability nor a formal system specifi-
cation are prerequisites to our approach. Fault diagnosis in Grids however still
is a largely manual time-consuming task. Automation efforts include an ap-
proach for fault localization through unit tests [5] that however requires manual
implementation of test cases and frameworks for verification of software stacks
and interoperability agreements such as [21]. Instead we use a model-based
description and to automatically generate diagnosis code. The use of machine
learning has been successfully applied to many kinds of different classification
problems [3, 20], e.g. to classify software behavior based on execution data [2]
or to locate anomalies in sets of processes via function-level traces [17]. We
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apply machine learning to semi-automatically create models that allow services
to diagnose faults of wrapped applications.

Synthesizing Wrapper Services using the Otho Toolkit. In previous work
we discussed the semi-automatic transformation of legacy applications to ser-
vices for integration in service-oriented environments [7]. Our focus lies on
resource-intensive, non-interactive command-line programs as typically used
in High-Performance and Grid environments. We presented the Otho Toolkit
as service-enabler for Legacy Applications (LA). Based on formal LA de-
scriptions it generates tailor-made wrapper services, referred to as Executor
Services (XS). They provide a purely functional interface hiding technical
details of the wrapping process on a certain execution platform, the Backend
BE . Input and output arguments, streams and consumed and produced files are
mapped to the XS interface. Multiple views on the same LA can be defined
to reflect different needs and to ease usage of complex interfaces. The Otho
Toolkit generates wrapper service source codes including a build system. Mul-
tiple service environments can be targeted and the services may be equipped
with application-specific features and generic extensions1.

2. Diagnosing Application Faults
Normally software has been extensively tested before released to production.
Nevertheless in large-scale deployments and complex environments such as
Grids applications are likely to fail2. Common reasons are improper installa-
tions or deployments, configuration problems, failures of dependent resources
such as hosts, network links, storage devices, limitations or excess on resource
usage, performance and concurrency issues, usage errors, etc. Our goal is to
provide a mechanism to automatically identify and distinguish such causes.
The fault diagnosis process consists of the tasks of error detection, hypothe-
sizing possible faults, identification of actual fault via analysis of application,
application artifacts and environment and finally reporting of diagnosis results.
As prototype application we chose the raytracer POV-Ray [29], an open-source
general-purpose visualization application and the GNU Linear Programming
Toolkit (GLPK) [27] a software package for solving linear programming and
mixed integer programming problems.

Building Fault Diagnosis Models. Instead of requiring a full formal system
specification we provide a set of easy-to-use elements for building fault diag-

1Currently supported are WSRF-Services with Globus Toolkit [26], Web services with Apache Axis and
Apache Axis [24], JBoss EJBs [28] and ASG services [25]. Examples for features are filetransfer, re-
source usage accounting, support for MPI/OpenMP or parameter sweeping. Available extensions include
components for Grid credential management, monitoring and filesystem operations.
2In accordance with Laprie [16] we define a fault as the hypothesized or identified cause of an error, e.g.
due to a hardware defect; an error as a deviation from the correct system state that, if improperly handled or
unrecognized, may lead to a system failure where the delivered service deviates from specified service.
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nosis models. They allow developers to describe cases in which their programs
may fail and users to describe cases in which their programs have failed in the
past. As no knowledge on formal system specification techniques is required
we believe our approach is practical and more likely to be applied in the com-
munity of Grid users. The diagnosis models are rule-based case descriptions
that allow services to perform automated reasoning on the most-likely cause
of failures of the wrapped application. Results are then reported to clients.
Such diagnosis models are constructed as follows: (1) Indicators are exter-
nally visible and monitorable effects of the execution of a certain application.
We distinguish boolean-valued predicates, e.g. the existence of a certain file
or directory, indicators returning strings (StringInd) such as patterns in output,
error or log-files, indicators returning reals (RealInd) and indicators performing
counting operations (CountInd) such as the number of files in a directory. A
few examples are given below

(∃file)file extract stdout(regexp) exitCode()
(∃file)dir extract file(file, regexp) wall time()
(∃regexp)pattern stdout count pattern stdout(regexp)
(∃file)((∃regexp)pattern file) count files(regexp)

Next to the set of predefined indicators we allow the use of custom user-provided
indicators specific to certain applications, e.g. to verify functional correctness
via result checks, error rates, data formats, etc. In some cases runtime argument
values are needed as parameters for indicators, e.g. to refer to an output file
named via a program argument. Formally we use the Θ(argname) notation
to refer to runtime arguments. (2) Symptoms are sets of indicators describing
an undesirable situation, more concretely the existence of a fault. They are
comparisons of indicators with literal values or comparative combinations of
indicators evaluating to boolean values.

symptom � CountInd|RealInd{< | ≤ | = | ≥ | >}{r|r ∈ R}
symptom � CountInd|RealInd{< | ≤ | = | ≥ | >}CountInd|RealInd
symptom � StringInd{= | �=}{s|s ∈ string}
symptom � StringInd{= | �=}StringInd
symptom � Predicate|¬symptom|symptom ∧ symptom

Examples for symptoms are the existence of a coredump file, occurrence of the
string ’Segmentation fault’ in stderr, certain program exit codes, output values
or number of output files above or below some threshold, etc. (3) Rules built
on the basis of symptoms allow to reason about fault types. We define rules as
implications of the form (s1 ∧ s2 ∧ . . . ∧ sn) ⇒ u. Example diagnosis rules
for the POV-Ray application are given below.

exit=0 ∧∃file(Θ(sceneout)) ∧ ¬∃pattern stdout(”Failed”) ⇒ done successful
exit=249 ⇒ failed illegal argument
exit=0 ∧∃file(Θ(sceneout)) ∧ filesize(Θ(sceneout)) = 0 ∧

∃pattern stdout(”Disk quota exceeded.”) ⇒ failed quota
exit=0 ∧filesize(Θ(sceneout)) = 0 ⇒ failed disk quota exceeded
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exit=0 ∧¬∃file(Θ(sceneout)) ∧
∃pattern stdout(”File Error open”) ⇒ failed file writing error

exit=0 ∧∃pattern stdout(”Got 1 SIGINT”) ⇒ failed received sigint
gramExit=1 ∧∃pattern gram log(’proxy is not valid long enough’)∧

⇒ failed proxy expires soon
gramExit=1 ∧∃pattern gram log(’couldn’t find a valid proxy’)∧

∃pattern gram log(’proxy does not exist’) ⇒ failed no proxy
gramExit=1 ∧∃pattern gram log(’proxy does not exist’) ⇒ failed proxy expired

The second rule e.g. states that the return code 249 unambiguously identifies an
illegal argument fault. Failures caused by exceeded disk quota are recognized
by an apparently successful return code however in combination with a zero-size
outputfile and a certain error message. (4) Models. Finally a set of rules builds
a fault diagnosis model. The rules are meant to be evaluated post-mortem,
i.e. immediately after the execution terminated, in the specified ordering. If
no rule evaluates to true, the fault cannot be identified. Depending on the
desired behavior the diagnosis can continue the evaluation if multiple rules
are satisfied. The fault is then considered to belong to all found classes. For
practical reasons we developed a simple XML-based syntax for representing
fault diagnosis models as those shown above.

<fdiag>
<cause name="successful" status="DONE">
<exitCode value="0" />
<fileExists name="|sceneout|" />
<not><regexpStdout value="Failed" /></not>

</cause>
<cause name="illegal argument" status="FAILED">
<exitCode value="249" />

</cause>
</fdiag>

This example lists two root causes each named and tagged with a post-execution
status value. A set of indicators sequentially evaluated with logical conjunction
can be given. Elements may be negated by adding a ’not’ tag.

Service States. Executor Services (XS) always reside in one of a finite
well-defined set of states. The corresponding finite state machine is shown in
Figure 1. The faulty states F1, . . . , Fn are replaced by a finite set of fault
classes specific to each application. The transition from F to F1, . . . , Fn is
triggered after fault diagnosis. All other transitions are triggered by the XS
based on actions it performs (e.g. job submission) or events it receives (e.g. a
state-change notification from a resource management system).

Implementation. Wrapper services, and especially our synthesized tailor-
made Executor Services XS, already possess detailed knowledge on the appli-
cation structure and behavior, control its execution and lifecycle and are aware
of input and output arguments, messages and files. Moreover they have the
necessary proximity to the execution host for fault investigation. Therefore we
chose to address and implement the fault diagnosis as part of the Otho Toolkit
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Figure 1. XS as FSM. Ready (R), Submitted (S), Queued (Q), Active (A), Suspended (P),
Cancelled (L), Completed (C), Failed (F). Faults: F1, F2, . . . Fn

and the XS it synthesizes. All indicators were implemented as generic Bash
and Python scripts. We extended Otho Toolkits LA description with the fault
diagnosis syntax as shown above. The Otho Toolkit then translates the formal
model into source code that evaluates each case using the generic indicator
scripts. The XS executes this script immediately after the application. The
script evaluates the diagnosis model rule by rule. Indicator results are cached
to prevent redundant evaluations of re-occurring indicators.

<definitions name="PovrayImage" ... > ..
<types> <simpleType name="FaultClass">
<schema ...> <restriction base="xsd:string">

<element name="executePovrayImageRequest"> <enumeration value="DISKQUOTA" />
<complexType> <enumeration value="SIGKILL" />
<sequence> <!-- also: ILLEGALARGUMENT,
<element name="scenepov" type="xsd:string"/> SIGINT, SUCCESS, ..." -->
<element name="width" type="xsd:int"/> </restriction>
<!-- ... --> </simpleType>

</sequence> </schema>
</complexType> </types>

</element>
<!-- ... --> <portType name="PovrayImage">

<operation name="createResource"> ..
<simpleType name="Status"> <operation name="execute"> ..
<restriction base="xsd:string"> <operation name="getStatus"> ..
<enumeration value="READY" /> <operation name="getFaultDiagnosis"> ..
<enumeration value="SUBMITTED"/> <operation name="getStdOut">
<enumeration value="QUEUED" /> <!-- also: getStdErr, cancel, suspend,
<!-- also: ACTIVE, SUSPENDED resume, destroyResource, .. -->

FAILED, CANCELED, COMPLETED" --> </portType>
</restriction> <!-- .. -->

</simpleType> </definitions>

Figure 2. Parts of XS Interface for Propagation of Fault Diagnosis Results

If the XS executes the LA via job submission to a resource management sys-
tems the LA and the fault diagnosis script are submitted as one job to ensure
execution on the same resource. The fault diagnosis capabilities and states need
to be represented in the service interface. Figure 2 shows parts of the WSDL
for the Axis2 [24] XS platform. The request type contains the input argument
values for the wrapped LA. Operations allow to query state, fault diagnosis via
fault classes and other artifacts and information. Obviously the interface differs
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depending on the concrete service platform. E.g. Axis2 webservices use a job
identifier whereas WSRF GT4 services rely on stateful resource properties.

3. Semi-Automated Learning of Fault Diagnosis Models
With increasing utilization variety and frequency of faults will increase. Our
hypothesis is that given a set of past classified fault events it is possible to learn
models that are able to correctly classify unseen novel faults.

Phases. The process of learning and improvement in the context of the Otho
Toolkit and XS is depicted in Figure 3. In the bootstrapping phase an initial set
of services is created and deployed by the Otho Toolkit. At runtime each fault
is analyzed and added to the knowledge base as new fault event. At the end of
the bootstrapping phase the collected fault events are tagged with class labels.
This is a manual step done by users, service provider or developers. Now the
classified training set is used as input to the machine learning procedure that
creates new models which enable the classification of unseen fault events that
are similar to past faults. The updated or newly learned model is then fed into
the Otho Toolkit that creates and redeploys an improved revision of the XS.
Additional events are then again collected, learning is re-triggered, followed by
synthesis and redeployment and so forth.

Fault Events. For each detected fault event a tuple of the form (I ∪ T )×
(S ∪ F ) is generated automatically. It contains all relevant information charac-
terizing a certain fault incidence specific to a given application. A set of boolean
or numeric indicators ii ∈ I such as existence, modification, size, open for read-
ing/writing as detailed above and a set of boolean indicators ti ∈ T whether
certain regular expression-based patterns (error messages, codes) can be found,
are applied to a given set of artifacts created during applications runs. Those

Figure 3. Applying Fault Diagnosis and Learning of Improved Models
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Figure 4. Decision Tree Classifier learned during Evaluation

artifacts include the standard input/output files associated with each process of
and application and the execution environment by si ∈ S, i.e. stdout, stderr, sys-
tem log and log files of resource management system and application-specific
input and output files fi ∈ F . The latter set has to be provided by the user and
may be a function of the program arguments. To each tuple the class label is
attached for use as training set for machine learning.

Classification Models and Algorithms. We selected a set of well-known
supervised machine learning techniques for classification problems [6, 18, 31].
All of them require a training set containing examples with class labels and
induce a model (classifier) that can then be used to assign unseen examples to a
set of classes. OneR (OR) is an algorithm that produces one-level classification
rules based on single attributes. A classification rule consists of an antecedent
that applies tests to reason about the consequent. DecisionStump (DS) produces
simple one-level decision trees. Decision trees follow the divide-and-conquer
principle where the problem space is partitioned by outcome of tests until all
examples belong to the same class. Logistic (LG) is a statistical modeling ap-
proach based on logistic regression where coefficients are estimated using the
maximum log-likelihood method. BayesNet (BN) is a statistical modeling ap-
proach producing Bayesian networks in forms of directed acyclic graphs with
probabilities over relevant attributes. DecisionTable (DT) denotes an algorithm
that produces a table consisting of relevant attributes, their values and the pre-
diction class. Finally J48 is an improved version of the C4.5 decision tree
machine learning algorithm. Figure 4 contains an example for a specific de-
cision tree classifier learned from the dataset ’failed/succ cleaned’ during the
evaluation of the J48 algorithm as described below. Each node represents a
certain indicator, branches are tests and leaf nodes are the fault classes. The
root node in this particular decision tree classifier is a boolean pattern exists
indicator searching for the string ’disk quota exceeded’ in stdout (’s0’). If the
first two tests are false but the exitCode indicator test evaluates to ’137’ the
fault diagnosis will yield the class label ’Failed Sigkill. Naturally the model is
specific to a certain application, training set and learning technique.

Evaluation. To evaluate the machine learning techniques for suitability to our
approach we used our implementation as part of the Otho Toolkit and the XS it
synthesizes. All learning techniques described above were implemented based
on [30]. We deployed both applications on the AustrianGrid [23] and injected
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Figure 5. Evaluation of Machine Learning Algorithms for POV-Ray
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several types of faults. After each failure the fault event capturing was started.
The result of each indicator evaluation was recorded in a repository. We attached
to each tuple a class label. The resulting training set was used in its raw state
(’failed noise’), in a cleaned state (’failed clean’) and to allow our classifier to
also identify correct behaviour with added successful runs (’failed/succ clean’).
The performance or accuracy of classifier is commonly evaluated in terms of
their success rates which is the proportion of true and false predictions. We
also show the relative absolute error RAE =

∑n
i=1 |pi − ai|/

∑n
i=1 |ai − a|

as a commonly used metric. An important issue is the question on which set
of instances to learn from and which set to evaluate against, as classifiers tend
to show better performance if evaluated against the training set than against
unseen examples. Therefore we applied three evaluation techniques. First we
used the full dataset (’ts’) for learning and evaluation. Second we used two-
third for learning one-third for evaluation (’66-sp’). Third we used 10-fold
cross-validation (’10-cv’) where metrics are averaged from ten iterations with
9/10 of examples used for training and 1/10 for evaluation. The set of examples
not used for training represent unseen fault cases.

Discussion. Figure 5 plots the accuracy and error rates of our experiments
for 10-cv and 66-sp. In general it can be observed that prediction accuracy
for the GLPK application case study were better than those for the POV-Ray
application in most cases. The overall quality apparently strongly depends not
only on the machine learning technique but also on the concrete application,
the indicators used and the corresponding structure of the training set. The
second observation is that even on the cleaned datasets the algorithms OR and
DS show significantly lower prediction accuracy than LG, DT, BN and J48. For
POV-Ray using 10-fold cross-validation DS has an accuracy of only 0.429 and
OR of 0.635 on the succ/failed compared to an observed 0.837 lower bound
accuracy for the other algorithms. Both methods produce rather simplistic
classifier clearly unsuited to capture complex fault events. Nevertheless for
trivial diagnostics, e.g. exit code unambiguously identifies fault case, they may
be useful as part of meta-models. The remaining four algorithms LG, DT, BN
and J48 show comparable performance without significant differences among
each other. For the cleaned datasets ’failed/succ cleaned’ and ’failed cleaned’
all four provide outstanding performance, correctly classifying up to 100% of
unseen instances. For instance for the POV-Ray application J48 has on the
’failed uncleaned’ raw dataset slightly better performance of 0.898 compared
to 0.837 of DT and 0.857 of BN and LG on average on the unseen data. During
evaluation we observed that the statistical models BN and LG tend to capture
also noise, whereas J48 tree pruning prevented such undesired behavior.
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4. Conclusion
With increasing size and complexity of Grids manual diagnosis of application
faults becomes impractical and time-consuming. We developed a model-based
mechanism allowing users, support staff or application developers to formulate
precise, rule-based fault diagnosis models evaluated immediately after program
termination. Such diagnosis models are used to provide accurate and reliable
reports. Our approach was implemented as part of application wrapper services
synthesized by the Otho Toolkit. In addition we suggest the use of machine
learning to create fault diagnosis models from past classified fault events. Our
evaluation showed that the learned diagnosis models were able to classify novel
fault situations with high accuracy. The overall performance however depends
on the dataset quality. We observed significant perturbation caused by noisy or
falsely labeled examples. Ideally developers, service providers and knowledge-
able users therefore regularly remove unclean examples from the training set.
As part of future work we plan to use a larger set of applications to get access to
a larger variety of faults. Exploration of clustering algorithms is also planned
as they allow to partition a set of instances automatically into groups without
the need for a priori labelling. Moreover we intend to investigate on overheads
and scalability of our fault diagnosis and machine learning approach.
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Abstract Service Level Agreements are used to establish agreements on the quality of a
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1. Introduction
Service Level Agreements (SLA) are used in different domains and on dif-

ferent levels to establish agreements on the quality of a service (QoS) between
a service provider and a service consumer. SLAs can be based on general
agreements, e.g. framework agreements, that govern the relationship between
parties, may include also legal aspects and may set boundaries for SLAs. How-
ever, this paper addresses the usage of SLAs on a lower, technical level and
focuses on agreements dealing with properties of services and resources in the
area of resource management and scheduling (RMS).

The remainder of the paper is organised as follows. Section 2 presents
a number of typical use cases in the RMS area. Two existing frameworks
for SLAs are introduced in Section 3, WSLA and WS-Agreement. The latter
is quite commonly used in the Grid landscape and we therefore describe in
Section 4 RMS systems already using WS-Agreement or planning to use it in
the near future. Section 5 concludes the paper and gives a brief outlook on
future work.

2. Use Cases
In this section we present three classes of use cases where SLAs are either

already used in the Grid RMS environment or will be used in near future.

2.1 Resource Reservation
For a presentation with live demonstration of an application the necessary

compute resource to run the application has to be available at the time of the
presentation. In an normal cluster environment where the nodes of the cluster
are used under a space-sharing policy, i.e. giving each user for the time of his
job exclusive access to the part of the resources needed for the job-execution,
the probability of finding a free slot that matches the requirements of a user
immediately is low, thus his job usually will be queued and executed later. For
a presentation with a fixed schedule this is not acceptable. Thus, the presenter
needs to reserve the resources in advance to be sure that they can be used for
the demonstration at the time foreseen. This reservation can be expressed as
a Quality of Service and an SLA is created for the reservation is fixed. In
the VIOLA project [11] this is done by the MetaScheduling Service (MSS),
which negotiates the time-slot with the scheduler of the cluster and initiates the
reservation of the nodes requested by the user.

2.2 Agreement on multiple QoS Parameters
In an environment consisting of several clusters potentially operated in dif-

ferent administrative domains SLAs might be used for co-allocation or the
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resource allocation for workflows. A typical use-case is the co-allocation of
multiple compute resources together with network links with a dedicated QoS
between these resources to run a distributed parallel application. The user spec-
ifies his request and the resource orchestrator starts negotiating with the local
scheduling systems of the compute resources and the network RMS (NRMS)
in order to find a suitable time-slot, where all required resources are available
at the same time. Once a common time-slot is identified the orchestrator re-
quires the reservation of the individual resources. Again, this reservation can
be expressed as a QoS and an SLA is created for the reservation. In the VIOLA
project this is done by the MSS, which negotiates the time-slots with the dif-
ferent schedulers of the clusters and the NRMS and initiates the reservation of
the all resources by the user. Another use-case is a workflow spanning across
several resources. The only difference to the use-case described before is the
type of temporal dependencies: While for the distributed parallel application
the resources must be reserved for the same time, for the workflow use-case the
resources are needed in a sequence given by the workflow.

2.3 Grid Scheduler interoperation
As there is no single orchestrating service or Grid scheduler in a Grid span-

ning across countries and administrative domains we have to deal with multiple
instances of independent Grid schedulers. Using resources from different do-
mains requires co-ordination across multiple sites. There are two approaches
either directly trying to negotiate with respective local scheduling systems or
negotiation with the respective local orchestrator. The former solution requires
local policies allowing a remote orchestrator to negotiate with local schedulers,
which is in general not the case. In the second case there is one access point
to the local resources, which then negotiates on behalf of the initiation orches-
trator. As the second approach also has a better scalability than the first one
the OGF Grid Scheduling Architecture Research Group (GSA-RG) decided to
consider this approach for the definition of a Grid Scheduling Architecture.
For the communication between the different orchestration services or Grid
schedulers a language and a protocol to create SLAs was selected to achieve
the necessary interoperability while at the same time resulting SLAs at the end
of the negotiation process, that can be composed by the initiating orchestrator
into one single agreement vis-à-vis his client.

3. Service Level Agreement Frameworks
This section introduces two existing frameworks for SLA specification and

monitoring: Web Service Level Agreement (WSLA) developed by IBM (com-
pleted in March 2003) and Web Service Agreement (WS-Agreement) developed
in a working group of the Open Grid Forum (OGF). While the WSLA specifi-
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cation [14] can still be downloaded at the WSLA web-page it was not widely
adopted and seems to be superseded by WS-Agreement to some extent now.

3.1 WS-Agreement
The Web Services Agreement Specification [1] from the Open Grid Forum

(OGF) describes a protocol for establishing an agreement on the usage of Ser-
vices between a service provider and a consumer. It defines a language and
a protocol to represent the services of providers, create agreements based on
offers and monitor agreement compliance at runtime. An agreement defines a
relationship between two parties that is dynamically established and dynam-
ically managed. The objective of this relationship is to deliver a service by
one of the parties. In the agreement each party agrees on the respective roles,
rights and obligations. A provider in an agreement offers a service according
to conditions described in the agreement. A consumer enters into an agreement
with the intent of obtaining guarantees on the availability of one or more ser-
vices from the provider. Agreements can also be negotiated by entities acting
on behalf the provider and / or the consumer. An agreement creation process
usually consists of three steps: The initiator retrieves a template from the re-
sponder, which advertises the types of offers the responder is willing to accept.
The initiator then makes an offer, which is either accepted or rejected by the
responder. WS-AgreementNegotiation which sits on top of WS-Agreement
furthermore describes the re/negotiation of agreements. An agreement consists
of the agreement name, its context and the agreement terms. The context con-
tains information about the involved parties and meta-data such as the duration
of the agreement. Agreement terms define the content of an agreement: Ser-
vice Description Terms (SDTs) define the functionality that is delivered under
an agreement. A SDT includes a domain-specific description of the offered or
required functionality (the service itself). Guarantee Terms define assurance
on service quality of the service described by the SDTs. They define Service
Level Objectives (SLOs), which describe the quality of service aspects of the
service that have to be fulfilled by the provider. The Web Services Agreement
Specification allows the usage of any domain specific or standard condition
expression language to define SLOs. The specification of domain-specific term
languages is explicitly left open.

3.2 Web Service Level Agreement (WSLA)
WSLA [13] is a framework developed by IBM for specifying and monitoring

Service Level Agreements (SLA) for Web Services. The framework is able to
measure and monitor the QoS parameters of a Web Service and reports viola-
tions to the parties specified in the SLA. In a Web Service environment, services
are usually subscribed dynamically and on demand. In this environment, auto-
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matic SLA monitoring and enforcement helps to fulfil the requirements of both
service providers and consumers. WSLA provides a formal language based
on XML Schema to express SLAs and a runtime architecture which is able to
interpret this language. The runtime architecture comprises several SLA mon-
itoring services, which may be outsourced to third parties (supporting parties)
to ensure a maximum of objectivity. The WSLA language allows service cus-
tomers and providers to define SLAs and their parameters and specify how they
are measured. The WSLA monitoring services are automatically configured to
enforce an SLA upon receipt.

The SLA management life cycle of WSLA consists of five distinct stages:
Negotiation / Establishment: In this stage an agreement between the provider
and the consumer of a service is arranged and signed. An SLA document is
generated.
SLA Deployment: The SLA document of the previous stage is validated and
distributed to the involved components and parties.
Measurement and Reporting: In this stage the SLA parameters are computed
by retrieving resource metrics from the managed resources and the measured
SLA parameters are compared against the guarantees defined in the SLA.
Corrective Management Actions: If an SLO has been violated, corrective
actions are carried out. These actions can be to open a trouble ticket or auto-
matically communicate with the management system to solve potential perfor-
mance problems. Before all actions regarding the managed system the Business
Entity of the service provider is consulted to verify if the proposed actions are
allowable.
SLA Termination: The parties of an SLA can negotiate the termination the
same way the establishment is done. Alternatively, an expiration date can be
specified in the SLA.

4. Usage of SLAs for Resource Management and
Scheduling

4.1 Schedulers with WS-Agreement implementations
A number of projects already started implementing and using WS-Agreement

for the definition of SLA. The projects are in different stages and not all build
their implementation on the version 1.0 of WS-Agreement that has become a
proposed recommendation in May 2007. However, it may be expected that all
of the implementations move to this version within the next months.

4.1.1 VIOLA MetaScheduling Service (MSS).
Description: In the VIOLA project an optical testbed was implemented be-
tween multiple partners in Germany. The main goals were the test of advanced
network architectures, development of software for user-driven dynamical pro-
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vision of bandwidth and test of parallel applications. The project ended April
2007 but the MSS will be further developed in a number of other projects.
Grid ecosystems: Grid applications in VIOLA were run on three Linux-based
PC-Clusters, a SUN-Cluster and a Cray X-D1 with a total peak performance
of 900 GFLOPS. The VIOLA Grid is based on UNICORE. A single instance
of a MetaScheduling Service integrated into the UNICORE middleware is able
to perform co-ordinated CPU and network bandwidth reservation between the
clusters in the Grid, enabling distributed applications on these systems [12].
WS-Agreement implementation: The VIOLA MetaScheduling Service MSS
is responsible for negotiation of resource allocation with the local scheduling
systems. It is implemented as a Web Service receiving a list of resources pre-
selected by a resource selection service. The resource reservation is based on
WS-Agreement. Network resources are reserved through a WS-Agreement
Interface with the Adapter of the NRMS ARGON [8]. Resource reservations
are negotiated through adapters with local scheduling systems also using WS-
Agreement. Furthermore, the negotiation between the MSS and the UNICORE
Client is based on WS-Agreement. When a UNICORE Client wants to make a
reservation, it sends the resource request to the MSS as a WS-Agreement tem-
plate. The MetaScheduling Service then negotiates a potential start time for
the Job and requests reservation of the network and computational resources.
After successful completion of this reservation the MSS sends an End Point
Reference (EPR) of the created WS-Agreement back to the UNICORE Client.

4.1.2 AssessGrid openCCS.
Description: AssessGrid is a European project, which started in April 2006.
AssessGrid introduces risk management and assessment to Grid computing to
facilitate a wider adoption of Grid technologies in business and society. Risk
assessment helps providers to make decisions on suitable SLA offers by re-
lating the risk of failure to penalty fees. Similarly, end-users get knowledge
about the risk of an SLA violation by a resource provider that helps to make
appropriate decisions regarding acceptable costs and penalty fees. A broker is
the matchmaker between end-users and providers. The broker provides a time
/ cost / risk optimised assignment of SLA requests to SLA offers.
Grid ecosystems: AssessGrid uses a distributed RMS called Computing Cen-
ter Software (CCS or openCCS). CCS provides interfaces to UNICORE and
Globus Toolkit 4 [6].
WS-Agreement implementation: In CCS a Grid-wide resource broker pro-
vides transparent access to Grid resources by querying resource providers on
behalf of end-users. For the end-user the broker acts as a pre-selector of Grid re-
source providers. The WS-Agreement protocol is currently being implemented
for openCCS. The major negotiable SLA parameters in openCCS are: General
parameters like number of nodes, amount of memory, job runtime, Deadline for
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job completion, Policies on security or migration, and Fault tolerance require-
ments. A negotiator module is responsible for negotiating SLAs with external
contractors using the WS-Agreement-Negotiation protocol. The negotiator de-
fines the price, penalty and risk in the SLA according to policies. The risk is
included in the SLA as an additional attribute. The Risk Assessor evaluates
current monitoring information as well as aggregated statistical information to
assess the risk for an SLA violation. WS-Agreement is used in the commu-
nication of the user with the broker, the user with the provider and the broker
with the provider. The user interface modifies the SLA template of the broker
or provider based on the user prerequisites such as hardware architecture and
available libraries and sends it back to the broker or provider in order to receive
SLA offers. Offers are presented to the end-user by the broker with price, risk
of failure and penalty attributes. The end-user then either agrees or rejects such
an offer.

4.1.3 ASKALON.
Description: ASKALON is a Grid project of the Distributed and Parallel Sys-
tems Group at the University of Innsbruck. The main goal is to simplify the
development and optimisation of applications that can utilise a Grid for com-
putation. ASKALON is used to develop and port scientific applications as
workflows in the Austrian Grid project. The developers designed an XML-
based Abstract Grid Workflow Language (AGWL) to compose job workflows.
Grid ecosystems: A resource manager remotely deploys software e.g. by us-
ing the Globus Toolkit middleware with the GridFTP protocol and the Globus
Resource Allocation Manager (GRAM).
WS-Agreement implementation: SLAs can be made with the Grid resource
for a specified time-frame by using the GridARM Agreement package. Gri-
dARM ensures that a defined capacity and capability is available in the agreed
time-frame including parameters like number of CPUs. The agreement manage-
ment consists of two parts: The AgreementNegotiator and the AgreementSer-
vice. The AgreementNegotiator works as an agreement factory service. During
the agreement negotiation process with the client, multiple agreement offers are
created based on the information provided by the client as an AgreementTem-
plate. The client can accept one or more of the offers or reject all of them. The
AgreementService manages particular agreements. After the negotiation
process is finished, all interaction addressing e.g. agreement access and updates
is done by interacting with the AgreementService using an EPR. In ASKALON,
the client (consumer) always creates agreement templates and is therefore al-
ways the agreement initiator. The provider creates one or more offers which
are accepted or rejected by the client.
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4.1.4 Community Scheduler Framework (CSF).
Description: CSF [3] is an open source implementation of an OGSA-based
meta-scheduler. It is developed by Platform Computing Inc. and the Jilin
University. CSF is a set of modules that can be assembled to create a meta-
scheduling system that accepts job requests and executes them using available
Grid compute services. Grid level scheduling algorithms can for example in-
clude scheduling across multiple clusters within a VO, co-scheduling across
multiple resource managers, scheduling based on SLAs and economic schedul-
ing models.
Grid ecosystems: CSF supports the Globus Toolkit’s Grid Resource Alloca-
tion and Management (GRAM) service. It is included in Globus Toolkit 4.0.
WS-Agreement implementation: CSF claims to support the WS-Agreement
specification, however we are not aware of an implementation using WS-
Agreement so far.

4.1.5 AgentScape.
Description: The Intelligent Interactive Distributed Systems (IIDS) group of
the Vrije Universiteit Amsterdam develops the AgentScape framework that pro-
vides mobile agents access to computing resources on heterogeneous systems
across the Internet [7].
Grid ecosystems: The negotiation of resource access for applications is
based on WS-Agreements. A mediator called domain coordinator (DC) in
AgentScape represents multiple autonomous hosts and communicates with the
mobile agent on behalf of these nodes. Agents can negotiate their options with
DCs of multiple domains, being able to select the DC that provides the best
offer.
WS-Agreement implementation: The WS-Agreement based negotiation in-
frastructure of AgentScape allows agents to negotiate terms of conditions and
quality of service of resource access with domain coordinators. Hosts pro-
viding resources are aggregated into virtual domains. The DC represents the
hosts within a virtual domain in the negotiation process. The WS-Agreement
interaction model is extended to allow a more sophisticated negotiation. In this
extended negotiation model, hosts provide an agreement interface to their DC.
The DC aggregates templates offered by hosts into composed templates and
makes these available to agents. Agreement requests made by agents based
on composed templates are received by the DC. The DC then negotiates an
agreement with the hosts with the requested resources. The additional accep-
t/reject interaction sequence allows agents to enter into negotiations with mul-
tiple providers and compare received offers. Resources that can be requested
and used by agents include CPU time, communication bandwidth, amount of
memory, disk space, web services that the agent is allowed to access and the
number of calls of a web service that the agent is allowed to do. After the
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negotiation phase, a host manager monitors and controls the resource usage to
ensure that agreements are met.

4.2 Schedulers planning WS-Agreement implementations
The Grid Scheduling Architecture research group (GSA-RG) of the Open

Grid Forum and the research group for the Definition of a Grid scheduling
architecture of the CoreGRID Institute on Resource Management and Schedul-
ing address the overall architecture of scheduling in the Grid, the components
and their interaction. In the GSA-RG a number of projects and groups are
represented that have developed and maintain most of the systems described
before. One of the outcomes of the work in the GSA-RG is considering WS-
Agreement for the communication between Grid schedulers. The developers
of the two systems described below are also participating in the GSA-RG and
decided to join the effort of implementing WS-Agreement to provide interop-
erability with other Grid schedulers and to create a testbed to perform a number
of demos and experiments.

4.2.1 Grid Resource Management System (GRMS).
Description: GRMS [5] is an open source meta-scheduling system, which is
developed at the Poznan Supercomputing and Networking Center. It is a part
of the Gridge Toolkit. GRMS allows developers to build and deploy resource
management systems for large scale distributed computing infrastructures. The
main goal of GRMS is to manage the process of remote job submission to
various batch queueing systems, clusters or resources. GRMS supports dynamic
resource selection, mapping and scheduling.
Grid ecosystems: The Gridge Toolkit components were tested with different
version of the Globus Toolkit and other Grid middleware solutions. GRMS
Service is a web service implemented in Java. GRMS can be used in conjunction
with various queuing systems, such as Condor, PBS and LSF.
WS-Agreement implementation: GRMS developers are active in the OGF
GSA-RG and plan to extend GRMS to support the evolving proposal for a Grid
Scheduling Architecture.

4.2.2 GridWay.
Description: GridWay [4] is a meta-scheduler developed by the Distributed
Systems Architecture Group at the University of Madrid. GridWay performs
job execution management and resource brokering transparently to the end user.
It furthermore adapts job execution to changing Grid conditions by providing
e.g. fault recovery mechanisms, dynamic scheduling, on-request migration and
opportunistic migration.
Grid ecosystems: GridWay provides interfaces to remote resources through
Globus GRAM and therefore supports all remote platforms and resource man-
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agers (for example fork, PBS and LSF) compatible with Globus. GridWay
supports the usage of the Job Submission Description Language (JSDL) as
well as GridWay Job Template files.
WS-Agreement implementation: The GridWay meta-scheduler could be ex-
tended or used as a building block for more complex architectures that im-
plement SLAs or advanced reservation. Gridway developers are active in the
OGF GSA-RG and plan to support the evolving proposal for a Grid Scheduling
Architecture.

4.2.3 CATNETS.
Description: CATNETS is a project of several universities and research centers
across Europe with the objective to determine the applicability of a decentral-
ized economic self-organization mechanism for resource allocation in applica-
tion layer networks (ALN), which include Grid systems. The name CATNETS
is based on an economic self-organization approach of a free market, the Catal-
laxy. CATNETS simulates the ALN environment by an economy, where the
resources are for example processor time or storage space, while the economic
actors are computers or web services. The application service and compute re-
source allocation of Application Layer Networks is broken down into two types
of interrelated markets: A Grid resource market, where computational and data
resources are traded and a service market where application services are traded.
These services provide particular application functionality, e.g. query execu-
tion or molecule docking. In these separate markets complex services buy basic
services, which buy raw resources. In this Catallaxy approach, the market is
self-organizing which means that no centralized broker is required.
Grid ecosystems: In the prototype implementation the middleware is imple-
mented as a set of simple, specialised agents using the light-weighted agents
platform of the Decentralised Information Ecosystem Technologies (DIET)
project. The agents provide for example access to markets, negotiations, object
discovery and communication. The management of local resources is based
on the WS-Resource Framework offered by Globus Toolkit 4. Middleware is
further implemented using JXTA technology.
WS-Agreement implementation: WS-Agreement is used in the implemen-
tation of both the service market and the resource market. CATNETS defines
separate bidding language for the service and the resource market, which are
used by agents to submit bids for services or resources. These languages are
mapped onto WS-Agreement via domain-specific schemes. The offers are en-
coded in XML using WS-Agreement and JSDL. In the resource market basic
services can submit sell orders to the order books with WS-Agreement and the
resource services can submit buy orders to the order books. After submission
of all bids to the auctioneer, the allocation and the corresponding prices are
determined, which results in an agreement. The activity on the service market
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is quite similar. The WS-Agreement implementation of CATNETS is techni-
cally integrated into the Triana workflow engine which allows visualisation of
Agreement Templates and Offers. It also enables the workflow to be paused
until an Agreement Offer has been confirmed.

4.3 Scheduler planning to use other SLA technology
4.3.1 eNanos Resource Broker.
Description: In the eNanos project [9] of the Barcelona Supercomputing Cen-
ter a general purpose OGSI-compliant Grid resource broker is developed and
maintained.
Grid ecosystems: The eNanos Grid resource broker [9] is implemented on top
of Globus Toolkit (GT) and supports both GT2 and GT3. The broker focuses
on resource discovery and management as well as dynamic policies manage-
ment for job scheduling and resource selection. It utilises some of the Globus
Toolkit services such as the Grid Security Infrastructure (GSI), the Grid Re-
source Allocation and Management (GRAM), Data Management Services and
the Information Services, Monitoring and Discovery System (MDS).
Service Level Agreement implementation; The eNanos Grid resource bro-
ker provides dynamic policy management and multi-criteria user requirements.
The user multi-criteria file is an XML document is composed of requirements
and recommendations and can be used in policy evaluation. A requirement
(hard attribute) is a restriction for the resource filtering and a recommendation
(soft attribute) can be used to create a resource ranking for policy evaluation.
Extending the Grid resource broker to include an SLA component is currently
under discussion.

4.3.2 Grid superscalar.
Description: GRID superscalar [2] is a Grid programming environment de-
veloped and maintained at the Barcelona Supercomputing Center [10]. With
GRID superscalar a sequential application composed of tasks of a certain gran-
ularity is automatically converted into a parallel application where the tasks are
executed in different servers of a computational GRID. GRID superscalar pro-
vides automatic deployment of tasks. It sends and compiles code in the remote
workers and the master.
Grid ecosystems: The current version is built on top of Globus 2.4, Globus 4.0
ssh/scp. For file transfer, security, etc. the Globus functionality is used.
Service Level Agreement implementation; When a task is ready for execu-
tion the scheduler tries to allocate a resource. In this case the broker receives
a request and checks if a resource fulfils the constraints of this task. If more
than one resource fulfils the constraints, the resource with minimum file transfer
and execution time is selected. Extending Grid superscalar to include an SLA
component is currently under discussion.
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5. Outlook
There are already a number of schedulers either using an SLA implemen-

tation to provide dedicated QoS for the user’s applications. Others plan to
provide an implementation of it in the near future, either for interoperability
reasons and/or to provide a guaranteed level of service. Recent public dis-
cussions at the OGF GRAAP working group and at the 5th Meeting of the
CoreGRID Institute on Resource Management and Scheduling point out that
SLAs will play a stronger role in the domain of Grid RMS. WS-Agreement is
now a proposed OGF recommendation for the expression and creation of SLAs.
We expect that more Grid level schedulers or brokers will now adopt to using
SLAs for two reasons: (i) interoperability with other Grid level schedulers and
brokers and (ii) using a standardised interface for negotiating QoS between
users and service providers.
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Abstract A Service Level Agreement (SLA) represents an agreement between a service
user and a provider in the context of a particular service provision. SLAs contain
Quality of Service properties that must be maintained by a provider. These are
generally defined as a set of Service Level Objectives (SLOs). These properties
need to be measurable and must be monitored during the provision of the service
that has been agreed in the SLA. The SLA must also contain a set of penalty
clauses specifying what happens when service providers fail to deliver the pre-
agreed quality. Although significant work exists on how SLOs may be specified
and monitored, not much work has focused on actually identifying how SLOs
may be impacted by the choice of specific penalty clauses. The participation of a
trusted mediator may be necessary to resolve conflicts between involved parties.
The main focus of the paper is on identifying particular penalty clauses that can
be associated with an SLA.
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1. Introduction
A Service Level Agreement (SLA) represents an agreement between a client
and a provider in the context of a particular service provision. SLAs may be be-
tween two parties, for instance, a single client and a single provider, or between
multiple parties, for example, a single client and multiple providers. SLAs gen-
erally specify performance related properties, generally referred to as Quality of
Service (QoS) terms, that must be maintained by a provider during service pro-
vision. These properties need to be measurable and must be monitored during
the provision of the service that has been agreed in the SLA – and are referred to
as Service Level Objectives (SLOs). The SLA must also contain a set of penalty
clauses when service providers fail to deliver the pre-agreed quality. Although
significant work exists on how SLOs may be specified and monitored [10], not
much work has focused on actually identifying how SLOs may be impacted by
the choice of specific penalty clauses. The participation of a trusted mediator
may be necessary to resolve conflicts between involved parties. Automating
this conflict resolution process clearly provides substantial benefits. Different
outcomes are possible. These include monetary penalties, impact on potential
future agreements between the parties and the enforced re-running of the agreed
service. While it may seem reasonable to penalise SLA non-compliance, there
are a number of concerns when issuing such penalties. For example, consider
a service provider violation in a multi-provider SLA: determining whether the
service provider is the only party that should be penalised, or determining the
type of penalty that are applied to each party would be required. Enforcement
in the various legal systems of different countries can be tackled through stip-
ulating a ‘choice of law clause’, that is, a clause indicating expressly which
countries’ laws will be applied in case a conflict between the provider and the
client would occur. Specific ‘legal templates’ [4] can be used to further refine
such clauses. This paper focuses on identifying particular penalty clauses that
can be associated with an SLA and on identifying how penalty clauses impact
the choice of SLOs. The next section discusses the types of violations that
can be used in SLAs. Section 3 discusses the type of penalties that can be
used. An example from resource sharing in an electronic market (based on
work in the CATNETs project [4]) is presented in Section 4 and a mapping to
the WS-Agreement specification is proposed in Section 5. The paper ends with
discussions and conclusions.

2. Types of Violations
An SLA can go through a number of stages once it has been specified. As-
suming that the SLA is initiated by a client application, these stages include:
discovering providers; defining the SLA; agreeing on the terms of the SLA (in
addition to the penalties if the SLOs are not met); monitoring SLA violations;
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terminating an SLA; enforcement of penalties for SLA violation. Monitoring
plays an important role in determining whether an SLA has been violated, and
determining the particular penalty clause that should be invoked as a conse-
quence.

Monitoring SLA violations begins once an SLA has been defined. A copy
of the SLA must be maintained by both the client and the provider. It is nec-
essary to distinguish between an ‘agreement date’ (forming of an SLA) and an
‘effective date’ (subsequently providing a service based on the SLOs that have
been agreed). For instance, a request to invoke a service based on the SLOs
may be undertaken at a time much later than when the SLOs were agreed.
During provision it is necessary to determine whether the terms agreed in the
SLA have been complied with during provision. In this context, a monitoring
infrastructure is used to identify the difference between the agreed upon SLO
and the value that was actually delivered during service provisioning – which
is ‘trusted’ by both the client and the provider.

From a legal perspective, monitoring is a prerequisite for contract enforce-
ment. In the present context, the consequences of breaching the agreed SLOs
is a basic requirement. In addition, service clients base the reputations of,
and their trust in, service providers largely on the supported monitoring infras-
tructure. In the context of SLAs three types of monitoring infrastructures can
be distinguished: a trusted third party (TTP); a trusted module at the service
provider; and a module on the client site. In most typical situations a TTP
module provides all the necessary functionality for a monitoring service.

One of the main issues that the provider and the consumer will have to agree
during the SLA negotiation is the penalty scheme. It is also necessary to define
what constitutes a violation. Depending on the importance of the violated SLO
and/or the consequences of the violation, the provider in breach may avoid
dispatch or obtain a diminished monetary sanction from the client. As both the
service provider and the client are ultimately businesses (rather than consumers),
they are free to decide what kind of sanctions they will associate to the various
types of SLA breaches, in accordance with the importance of the SLO that was
not fulfilled. According to the Principles of European Contract Law [3], the
term ‘unfulfilment’ is to be interpreted as comprising: (1) defective performance
(parameter monitored at lower level ); (2) late performance (service provided at
the appropriate level but with unjustified delays); (3) no performance (service
not provided at all). Based on these descriptions we define the following broad
categories:

‘All-or-nothing’ provisioning: provisioning of a service meets all the
SLOs – that is, all of the SLO constraints must be satisfied for a successful
delivery of a service;
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‘Partial’ provisioning: provisioning of a service meets some of the SLOs
– that is, some of the SLO constraints must be satisfied for a successful
delivery of a service;

‘Weighted Partial’ provisioning: provision of a service meets SLOs that
have a weighting greater than a threshold (identified by the client).

Monitoring can be used to detect whether an SLA has been violated. Typically
such violations result in a complete failure – making SLA violations an ‘all-or-
nothing’ process. In such an event a completely new SLA needs to be negotiated,
possibly with another service provider, which requires additional effort on both
the client and the service provider. Based on this all-or-nothing approach, it
is necessary for the provider to satisfy all of the SLOs. This equates to a
conjunction of SLO terms. An SLA may contain several SLOs, where some (for
example, at least two CPUs) may be more important than others (for example,
more then 100 MB hard disk space). During the SLA negotiation phase, the
importance of the different SLOs for the client must be established. Clients
(and service providers) can then react differently according to the importance
of the violated SLO. In the WS-Agreement specification [1], the importance of
particular terms is captured through the use of a ‘Business Value’. Weighted
metrics can also be used to ensure a flexible and fair sanctionatory mechanism in
case an SLA violation occurs. Thus, instead of terminating the SLA altogether
it might be possible to renegotiate, for example, with the same service provider,
the part of the SLA that is violated. Again, the more important the violated
SLO, the more difficult it will be to renegotiate (part of) the SLA.

3. Penalties
The use of penalty clauses in SLAs leads to two concerns: what types of penalty
clauses can be used; and how, if at all, can these be included in SLAs. The
‘burden of proof’ and the interest in demonstrating that the agreed SLOs have
been violated lie with the main beneficiary of the service, that is, in the service
client. An important issue that should be considered when designing ‘penalty
schemes’ is that behind the imposition of any contractual sanctions lies the idea
that faulty behaviour of a provider should be deterred. As such, it is always pos-
sible for the service provider to contest its liability in the unwanted result (SLA
breach) and claim that a ‘force majeure’ situation occurred. Although the situ-
ation is impossible to be dealt with through automatic enforcement, monitoring
the message exchanges among the provider and the client can indicate whether
the SLA violation was the consequence of a ‘misconduct’ from the provider
(either intentional or negligent). The parties are advised to stipulate either in
the SLA or in the associated Collaboration Agreement how they choose to deal
with the situation where the provider’s faulty behaviour cannot be documented,
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and a ‘force majeure’ situation did occur. A penalty clause in an SLA may
consist of the following:

a decrease in the agreed payment for using the service, that is, a direct
financial sanction;

a reduction in price to the consumer, along with additional compensation
for any subsequent interaction;

a reduction in the future usage of the provider’s service by the consumer;

a decrease in the reputation of the provider – and subsequent propagation
of this value to other clients.

During the negotiation phase, client and provider can agree on a direct financial
sanction. Usually, the amount to be paid depends on the value of the loss
suffered by the client through the violation (that should be covered entirely)
and if agreed, a fix sum of money that has to be paid as ‘fine’ for the unwanted
behaviour. Due to the potential difficulties in proving and documenting the
financial value of the loss, during the negotiation phase the parties may choose
an ‘agreed payment for non performance’, that is, a fixed sum of money that will
have to be paid upon non-performance, regardless of the fact that no financial
loss was suffered by the client. The service provider can deposit the negotiated
fine in escrow with a TTP, who acts as a mediator, before the service provision
commences. Escrow is a bond, deed, deposit, etc., kept in the custody of a
third party, taking effect, or made available, only when a specified condition
has been fulfilled1. On successful completion of the service provision (based
on the SLA) the TTP returns the deposit to the service provider. Otherwise, the
client receives the deposit as compensation for the SLA violation. Notice that a
trusted monitor is required for this, as a client can never prove by itself that an
SLA was (partially) violated. For automated use, a micro-payment [7] system
is required – such as Paypal. Another possibility is that a client reduces its usage
of services from a provider that violated an SLA. If the economic position of
the client is strong enough, this can be a valid strategy. A third kind of penalty
clause can lead to a change in the reputation of a provider [9, 12]. In such a
system the reputation of service providers that violate SLAs will drop. In this
case special care needs to be taken that the reputation of a service provider
is correctly determined. Both reputation building, using dummy clients that
‘praise’ a service provider, and slandering reputations, where dummy clients
(unjustly) complain about a service provider, form serious threats in reputation
based systems. In the negotiation phase of the SLA, both service provider and
client can agree on the reputation mechanism to use.

1from Concise Oxford English Dictionary, Revised 10 Edition.
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4. Resource Sharing Use Case
Consider a market of computational service providers, where each provider may
use a combination of resources to meet a particular set of metrics of interest
to a client. In a service market, the parameters of interest may be of three
types: latency (time it takes to get a result back from the provider), execution
time (total time it takes to execute a service at the provider), and execution cost
(the monetary value associated with running a service by the provider). The
resources (R) that may be used by the provider are defined as a four tuple –
consisting of: number of CPUs (C), primary memory (M), disk storage (D),
and time interval (δt) – δt represents the interval between the start time and the
end time over which the resource is available. A resource provider is required
to define their capacity using these four parameters. Generally a client does
not care what resources are used, as long as their application performance
constraints are met. Conversely, a service provider needs to identify which
resources need to be used to achieve these metrics. Two types of SLAs co-exist
in this scenario – an SLA between an application client and the service provider,
and an SLA between a service provider and one or more resource owners. In
this example we use only four parameters to characterise access to a resource –
however this model can be expanded to include additional attributes that have
been specified within the Common Information Model (CIM) [6]from DMTF.

The SLA between the service provider and the resource owner may be de-
fined using the terms: (C, M, D, δt) = R – and may be offered by a single
provider, or it may be the aggregate capability of a group of providers. Prop-
erties of each Ri are published in a registry service—the resource owner being
responsible for updating these values in the registry. The registry may also
contain an aggregate resource description, describing the combined capabil-
ity of multiple providers. After having discovered a provider to interact with,
a client asks the provider for an SLA template. The template contains those
parameters that the provider understands and can monitor. Depending on the
type of description scheme being used, the client now adds constraints asso-
ciated with parameters that have been identified in the SLA. This ‘offer’ is
now sent to the provider—who may either agree with the request, or make a
counter offer. A negotiation process is initiated, which eventually results in
either an agreement or a failure. An example of an SLA in this context would
be: SLA1 = (2, 512MB, 2GB, (20071001190000), (20071001191000))—
indicating a request for a resource with 2 CPUs, 512MB of RAM, 2GB of disk
on October 1, 2007 from 19:00 to 19:10. Such a scenario also occurs in many
data centre applications today [13].

The SLA between the client and the service provider is often harder to specify,
as it can contain application specific terms as SLOs. As outlined in [5], given
an SLO of ‘average response time’ to be less than 10 seconds, the configuration
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with CPU assignment of 20% fails to meet the SLO, but a CPU assignment of
90% meets the SLO but the system is over-provisioned (as only 50% is needed
to meet the SLO). Therefore, identifying the types of provisioning that is needed
to ensure that the SLO is not violated, but that excessive resources are not used
to address a particular SLO requirement is important. A mapping is needed
between the requirements identified in an SLA between a client and a service
provider, and one between a service provider and a resource.

It is necessary when specifying an SLO to also specify the penalty that would
be incurred by a provider if the SLO was not met. Often a gradual structure of
penalties is defined, whereby SLO violations incur fines, and a certain number
of violations within a particular time period (such as a week or a month),
gives a client the right to terminate access to the service. A penalty identifies
the compensation that would be made to a service client if the SLO has been
violated. Examples of penalty clauses that may be associated with an SLA
between a service provider and a resource owner may be as follows [2]:

If 90% of the number of requested CPUs, and 90% of requested mem-
ory have been delivered, then these SLOs have not been violated. For
provisioning below 90% of CPU and memory, and for each percent, the
provider must incur a penalty of α monetary units.

If 90% of the number of requested CPUs and 90% of the requested RAM
and 80% of the requested disk have not been delivered, then for each
deviation from 90% (for CPU and RAM) and 80% for disk, the penalty
to the provider is β monetary units.

For an SLA between a client and a service provider, a service execution time
may be used as the SLO, then the penalty clause would be written as:

If 90% of the execution times are not in the 2 second range, then for each
deviation from the 98% of between 2 and 5 seconds, the penalty to the
provider is β monetary units, and for each percent of the 98% of execution
times more than 5 seconds, the penalty is γ, and for other percents that
are more than 5 seconds, the penalty is α monetary units.

A service provider must evaluate the penalty it would incur from the client if a
resource owner was not able to achieve their SLOs.

5. Mapping to WS-Agreement
The WS-Agreement specification [1] provides an XML schema to represent
the top-level structure of an agreement between two parties. This includes
concepts such as an agreement identifier, guarantee terms in an agreement etc.
A simple protocol is provided which allows offers, acceptance and rejection
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of an agreement to also be captured. An ‘Agreement Factory’ is used as an
interface to create a new instance of an agreement, with the use of ‘creation
constraints’ as an optional description of the types of agreements that a provider
is willing to accept. An important factor in this discussion is the use of the
‘Business Value’ (BV) and ‘Preference’ specification made available in WS-
Agreement. A BV allows a provider to assess the importance of a given SLO
to a client. Similarly, a provider may indicate to a client the confidence that
a provider has in meeting a particular SLO. Based on the specification, a BV
may be expressed using a penalty or reward type. The penalty is used to
indicate the likely compensation that will be required of a provider if the SLO
with which the penalty is associated is not met. We may weigh the importance
of an SLO with reference to other SLOs that constitute an agreement. Notice
that a BV list consists of both a penalty and a reward – to enable a provider
to assess the risk/benefit of violating a particular SLO. Preference is used
in the BV list to provide a more detailed sub-division of a business value for
different alternatives that may exist. Essentially, Preference allows a service
provider to consider different possible alternatives for reaching the same overall
SLO requirement. For instance, in the example of section 4, if a client requests
access to a particular number of CPUs, it is possible to fulfil this requirement
based on CPUs from one or more resource owners. Preference allows the
provider to chose between the available options to improve its own revenue or
meet other constraints that it has (provided this is not prohibited by the service
provision agreement or other agreements between the parties involved).

A Penalty in WS-Agreement may be associated with one or more SLOs,
and occurs when these SLO(s) are violated. According to the WS-Agreement
specification, assessment of a violation needs to be monitored over an
AssessmentInterval – which is defined either as a time interval or some
integer count. Essentially, this means that a penalty can only be imposed if
an SLO is violated within a particular time window, or if a certain number of
service requests/accesses fail. ValueUnit identifies the type of penalty – in
this case a monetary value – that must be incurred by the service provider if the
violation occurs. In the current WS-Agreement specification, the concept of
a ValueExpr is vague – being an integer, float or a ‘user defined expression’.
This implies that a user and provider may determine a dynamic formula that
dictates the penalty amount depending on the particular context in which the
WS-Agreement is being used.

<wsag:Penalty>
<wsag:AssesmentInterval>

<wsag:TimeInterval>xs:duration</wsag:TimeInterval> |
<wsag:Count>xs:positiveInteger</wsag:Count>

</wsag:AssesmentInterval>
<wsag:ValueUnit>xs:string</wsag:ValueUnit>
<wsag:ValueExpr>xs:any</wsag:ValueExpr>

</wsag:Penalty>
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In WS-Agreement the ability to also specify a Reward, in addition to a penalty,
provides an incentive mechanism for a provider to meet the SLO. Based on the
example in Section 4, a penalty clause for the SLA between the client and the
service provider would be as indicated below – specifying that four incorrect
invocations of a service would lead to a penalty of $500.

<wsag:AssesmentInterval>
<wsag:Count>4</wsag:Count>

</wsag:AssesmentInterval>
<wsag:ValueUnit>US Dollar</wsag:ValueUnit>
<wsag:ValueExpr>500</wsag:ValueExpr>

The extent to which terms and conditions specified in WS-Agreements are
legally binding is currently the subject of research [4]. One basic element is that
agreements need to be confirmed by both parties. As such, penalties in a WS-
Agreement, for example, cannot be one-sided. The WS-Agreements needs to
be confirmed by the client. The lack of this confirmation makes WS-Agreement
restricted in the context of legal perspective, as explored by Mobach et al. [11].

6. Discussion & Conclusions
The use of penalties in SLAs has obvious benefits for both clients and service

providers. Monetary sanctions and reputation-based mechanisms can both be
used as, pre-agreed, penalties. It has been shown how the WS-Agreement
specification can be used to specify penalties and rewards, in the context of a
particular resource sharing scenario.

A particular focus has been discussion of the types of violations that can
occur in SLOs during provisioning. Based on European legal contract law, we
identify three types of violations that may lead to penalties – an ‘all or nothing’,
‘a partial’ or a ‘weighted partial’ violation of a contract. An observation in
this work is that flagging a violations incurs a cost for the client (as well as the
provider). It is therefore in the interest of the client to continue with service
provision, even if some of the SLOs are not being observed fully – a trade-
off discussed in this paper. A key contribution of this work is a model that
demonstrates how a client may provide weighting to certain SLOs over others,
the legal basis on which this model is based (as outlined in Section 3) and
subsequently how this approach can be used alongside WS-Agreement.
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Abstract Virtual Organizations are evolving as a means of inter-domain collaboration.
The reason for building Virtual Organizations can be summarized as sharing
resources and enabling collaboration between service providers from different
organizational units. Within this paper we will show that bipartite Service Level
Agreements can be used as a basic principle for the management and operation of
Virtual Organizations. We show that our approach to build Virtual Organizations
on top of bipartite Service Level Agreements leads to agile and dynamic Virtual
Organizations, in contrast to most of the well-established models which regard
Virtual Organizations as rather static in nature.
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1. Introduction
The term Virtual Organization (VO) is mentioned in the Grid community

for the first time in [1] and is described as a mechanism for controlled resource
sharing. But neither this definition of the term VO nor any other single definition
is accepted in general. The Next Generation Grids Expert Group defines a VO
as “an abstraction for resource sharing and collaboration action across multiple
administrative domains” [2]. Although this is an intuitive definition, it seems
to be very unspecific. In contrast, the NextGRID project has developed a
very specific understanding of a VO that will be presented in this chapter.
We will give an overview of NextGRID VOs in general before explaining the
different types of Virtual Organizations that have been identified. We then
give an explanation of a VO’s lifecycle, whose understanding is of utmost
importance for the following explanations. In the following text, we call entities
participating in a VO “members” or “services”, regardless of them being service
providers, service consumers or a hybrid service both providing and consuming
services.

2. NextGRID SLA Management
Before introducing the SLA and VO specific parts of our work we want to

give a brief overview on the relevant components in the NextGRID Architecture
[5].

2.1 Bipartite Service Level Agreements
Service collaboration is in general achieved using Service Level Agreements,

where an SLA is a legally binding contract between two or more parties. From
an organizational point of view in most of the time, one of the parties can be seen
as a service consumer while the other parties can be seen as service providers.

In NextGRID, it has been decided to only employ bipartite SLAs, i.e. SLAs
which are established between two partners. This provides important architec-
tural simplifications when seeking to implement a managed Grid. However,
it also means that VO must be realised without using multi-party SLAs. The
focus of this paper is to show how this can be achieved, using the concept of
SLA federation which is also described.

NextGRID SLAs must adhere to the NextGRID SLA Schema shown in Fig-
ure 1. The top-level structure is modeled after the WS-Agreement structure
[10], while the metrics use some of the elements defined in the WSLA specifi-
cation [11]. Principally, NextGRID SLAs consist of three building blocks: the
SLA’s name, a context part and a terms part. The name may be used to uniquely
identify an SLA. The context contains information about all parties participat-
ing in an SLA; there may only be one service customer and one service provider,



Operating Virtual Organizations using Bipartite SLAs 361

Figure 1. Structure of a NextGRID SLA

regardless of their organizational state, but there may be additional supporting
parties defined. Be aware, that the restriction of the context information is what
we have called previously a bipartite SLA. In contrast to the other elements,
which set the scope of an SLA, terms can be seen as the content of an SLA,
describing desired qualities, lifetimes and payment issues.

Applying basic federation primitives to established bipartite SLAs in order
to infer new bipartite SLAs results in some additional input to bipartite SLAs
peculiar to federation mechanisms. We introduced a new property which con-
trols the allowance of federation from an already established bipartite SLA.
This is due to the fact that legal implications might force a service provider
to inhibit deduction of new SLAs through usage of basic federation principles
from SLAs the service provider has previously negotiated. Furthermore, this
property can be employed to reduce the derivation depth of inferred SLAs.

<Metric name="FederationAcceptance" defn="cc:FederationAcceptanceType">
<Target unit="boolean" dialect="http://www.w3.org/TR/xquery/">
<SuccessMeasure>
True

</SuccessMeasure>
</Target>
</Metric>

Figure 2. Metric for controlling federation

Figure 2 shows the metric controlling the allowance of federation. If the Suc-
cessMeasure is set to False, the federation of SLAs from the SLA encapsulating
this metric is not allowed.
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2.2 NextGRID Negotiation Protocol
The negotiation of an SLA in NextGRID has to follow a specific proto-

col. The NextGRID Negotiation Protocol is a so-called Discrete-Offer-Protocol
which can also be seen as a one-phase negotiation. Using this protocol, a cus-
tomer sends a request for an “offer”, called a “bid”, to a service provider’s nego-
tiator component. This bid is based on information received during a discovery
phase. The negotiation component checks the provider’s SLA repository to see
if he has a template for an SLA which corresponds to the bid received from the
customer. Determining exactly when an SLA template matches a certain bid is
entirely up to the service provider or rather the negotiation component. If an
SLA template has been selected by the negotiator, the customer’s contact details
are filled in, all necessary adaptions in regard to the bid are performed and the
resulting SLA offer is sent to the customer; if no template has been selected
by the provider, the customer will receive an information that he cannot obtain
an offer for the previously sent bid. If the customer receives an offer, he has
the chance to review it. If he agrees with the offer, he will send an acceptance
message to the service provider’s negotiator, otherwise he will send a reject
message. An acceptance message from the customer means that the offer has
now been turned into a bipartite SLA. Further information on the NextGRID
negotiation protocol and related aspects is given in [5], [6] and [7].

3. Federation Principles
It was previously mentioned that every interaction between two services in

a NextGRID VO is governed by a bipartite SLA. Federation principles help to
reduce the number of bipartite SLAs which are directly established between
two partners by providing a mechanism for deriving new bipartite SLAs based
on already established bipartite SLAs. If a new bipartite SLA is created using
federation principles, we refer to this SLA as being an inferred SLA. Three
basic federation principles have been identified ([12], [13]).

3.1 Encapsulation
Encapsulation is the act of providing a service to a consumer using a second

service, with no direct interaction between the consumer of the first service and
the provider of the second service.

Figure 3. Resource Encapsulation
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As can be seen in Figure 3, there is no direct relationship between the con-
sumer (SC) and the service provider b (SP b) since the SLAs established by
service provider a (SP a) between SC and SP a and SP a and SP b are not
related. However, the effect is to federate resources from SP a and SP b in order
to provide service to the consumer (SC).

3.2 Orchestration
Orchestration arises when a common consumer of two services requires them

to interact directly with each other. The basic scenario is for a consumer (SC)
to invoke one of two services (SP a) passing it an instruction that causes it to
invoke the other (SP b). Figure 4 shows the basic orchestration scenario.

Figure 4. Resource Orchestration

The effect of orchestration is the same as encapsulation: to federate resources
and to make them available to the consumer. The difference is that federation is
initiated by the consumer, while in encapsulation it is initiated by the first service
provider and may be completely hidden from the consumer. In an orchestration,
the consumer already has bipartite SLAs established between himself and the
two corresponding service providers, and it is possible to derive the bipartite
SLA governing the orchestrated interaction from the already existing SLAs.

3.3 Sharing
Sharing arises when a consumer a (SC a) shares his access to service (SP)

with another service consumer b (SC b). This does not federate resources, as
in the encapsulation or orchestration principles, but rather federates consumers
as shown in Figure 5.

Common to both resource orchestration and sharing is the fact that all col-
laborating parties are aware of federation taking place.
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Figure 5. Resource Sharing

4. Virtual Organizations
The NextGRID project defines a VO as follows [8]: “A NextGRID VO

is defined by a set of bipartite Service level Agreements (SLAs) established
between VO members such that all VO members are connected directly or
indirectly through bipartite SLAs. The boundary of a VO is either defined
by SLA paths combined with SLA visibility, unique VO IDs or membership
management services. Having established at least one bipartite SLA with some
VO member, the customer of a VO is a member of the respective VO as well.
Any pair of VO members can directly interact if a corresponding bipartite SLA
is available, no matter whether this SLA is negotiated or inferred.”

The difference between negotiated and inferred SLAs lies therein that nego-
tiation is a complex process and can take up a long time, whereas the step of
inferring new bipartite SLAs can be done much faster and with less overhead.

4.1 Types of Virtual Organizations
It is obvious that many forms of Virtual Organizations exist. Two main types

which represent two extremes in a very wide range of possibilities emerged
from early work on Grids. The “Big VO” arose naturally in early work on
scientific Grids [1], and are also found in some industrial collaborations such
as the supply chains for large engineering projects. The “Fast VO” came out of
early work on Web Service Grids [3]. Since then a wider range of possibilities
has been identified that have both “Big” and “Fast” characteristics to varying
degrees, and work to classify these is ongoing [4].

The “Fast VO” is characterized by the fact that service providers do not
collaborate directly with other VO members. Instead, they provide services to
customers, who may initiate the federation of services from different providers
(and hence collaboration between service providers) as required for their ap-
plications. In a “Fast VO” service providers normally have bipartite Service
Level Agreements (SLA) with their customers but not with each other, making
it easy to set up short-lived collaborations as required.
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Since NextGRID management is based on bipartite SLAs [5], it is triv-
ial to implement "Fast VO" using the NextGRID architecture. However, the
NextGRID architecture must be able to support a wide range of Grids includ-
ing more traditional "Big VO" configurations. Architectural experiments were
therefore carried out to find and validate a way to do this.

A “Big VO” is characterized by the fact that every VO member has a ne-
gotiated bipartite SLA established with each other VO member. Obviously,
this type of VO requires the negotiation of n(n − 1)/2 bipartite SLAs in a
VO consisting of n members. While this number of negotiated SLAs might
be acceptable for smaller “Big VO”s , this VO type does not scale well since
the number of negotiated SLAs lies in O(n2) in general. Figure 6 shows an
exemplary Virtual Organization of the “Big VO” type with 6 members and the
maximum of 15 negotiated bipartite SLAs. Henceforth, SLAs are plotted as
tuples in the remaining figures for ease of readability.

Figure 6. An exemplary “Big VO”

One solution to limiting the excessive growth in the number of negotiated
bipartite SLAs is service federation [8]. Through the use of service federation,
the number of negotiated SLAs can be reduced dramatically. Even more so
if nested service federation is allowed, because then it is only necessary to
have a chain of negotiated SLAs connecting all VO Members in a line. This
reduces the necessary number of negotiated SLAs to n−1, resulting in a general
number of negotiated SLAs which lies in O(n). This, however, comes with the
price of building a huge dependency tree on the negotiated SLAs. Cancelling a
negotiated SLA leads to the cancellation of all SLAs inferred from the originally
negotiated SLA. This ensures that rights, which have been originally granted
through the negotiated SLA, are revoked when the original SLA is cancelled.
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Of course, this does not prevent renegotiations. Furthermore, it is often desired
to have a central management instance in a Virtual Organization.

This leads to yet another way of building a “Big VO” on top of bipartite
SLAs by introducing an additional VO member which manages all interactions
(Figure 7). The introduction of such a central management instance limits the
number of negotiated bipartite SLAs to n− 1 as well, but additionally resolves
the problem of building a huge dependency tree on the negotiated SLAs. If a
negotiated SLA is canceled, only collaboration with the VO member connected
through this SLA is lost. As every VO member must have a negotiated bipartite
SLA established with the central management instance, access to any other VO
member can be achieved by applying basic service federation. To gain access
to any other VO member, only one federation step is required. Thereby, the
federated bipartite SLAs are directly inferred from negotiated SLAs and thus
have not to be negotiated.

Figure 7. An exemplary centralized “Big VO”

In the NextGRID project, this central component is called VO Lifecycle
Support Service (LSS). It is a regular NextGRID service provider but not a
regular core component of the NextGRID architecture.

4.2 Virtual Organization Lifecycle Phases
A Virtual Organization lives through different phases, which we call Lifecy-

cle Phases. We propose the following four Lifecycle Phases:

Identification During this phase potential services, that means VO members,
are discovered. Service discovery may be a process which occurs in
multiple steps, starting with a potentially large list of candidate services
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which is gradually reduced to a small subset of services which will be se-
lected as service providers for the VO. During this phase, SLA templates
which a service provider offers may be taken into account.

Formation After the candidate services have been selected, a series of steps has
to be accomplished before a VO may enter its productive phase. Bipartite
SLAs have to be negotiated, supporting VO services have to be created
and VO level policies and rules need to be distributed.

Operation & Evolution In this phase VO operations are taking place. This
does not mean that the VO is immutable and stays in the state in which
it was after the completion of the formation phase. On the contrary, the
list of VO members might be extended or reduced, depending on the
concrete operations which occur. Roles and responsibilities in the VO
might change as well, so it can be said that the VO is subject to a certain
kind of evolution.

Termination & Dissolution This phase effectively destroys the VO. All pro-
cesses needed to produce logs and traces for provisioning or accounting
procedures are executed before the VO is finally dissolved. Furthermore,
all actions taken during the formation phase, for example enabling access
to resources for VO participants, are revoked.

5. Implementing Virtual Organization Lifecycle
Management

Figure 8 gives an overview of the components forming a VO realization,
along with the relations between these components. The relations between
the components building the VO (including the VO Admin Client Service)
are determined through bipartite SLAs negotiated between the LSS and VO
members.

These SLAs are displayed as lines with arrows between LSS and VO mem-
bers. The lines without arrows between VO Admin Client Service and the
administrator (connected through the VO Admin Client GUI) as well as be-
tween Customer Client Service and customer (connected through the Customer
Client GUI) express a one-to-one relation between GUIs and services. This
relation can be seen as proprietary in the sense that it is not subject to an SLA or
something comparable. The connection of a service to a GUI client just serves
to provide an interface to human users allowing interactive interference with
the VO. In fact, this connection can be implemented in different ways and any
VO member service implementation can freely decide on how to provide it.

In the realized “Big VO” system, all VO members, including the LSS, are
embodied as Globus Toolkit 4 (GT4) services [14]. All services provide a
common set of service methods related to SLA negotiation following the ne-
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Figure 8. Realization of a Big VO

gotiation logics as described in section 2.2 as well as SLA federation specific
service methods. VO management resides on top of SLA management, which
forms the basic building block of VO management. All involved components
along with their specific features are listed in the following:

Lifecycle Support Service (LSS): This service is the heart of a VO and repre-
sents a VO’s central management instance. The LSS invites VO members
and, therefore, negotiates SLAs with potential VO members. To allow
resource sharing within the VO, the LSS federates SLAs based on the
negotiated SLAs and implements them between VO members to allow
them to directly collaborate according to the terms of such a federated
SLA. From a functional point of view the LSS exposes two different sets
of service methods. The first set is accessible only to the VO Admin
Client Service and all methods contained in this set are specific to the
management of a VO whereas the second set can be invoked by all VO
members. The first set comprises methods e.g. to invite new VO mem-
bers, federate SLAs etc. The second set provides methods e.g. to retrieve
information about available resources within the VO, request access to
resources etc.

VO Admin Client Service & VO Admin Client GUI: The VO Admin
Client Service represents the owner and administrative authority of the
VO. This service is used to steer the LSS and, therefore, to carry out VO
management. It is the only VO member authorized to access the LSS’s
VO management service methods. A VO Admin Client GUI is provided
for this service, which is a GT4 client code allowing interactive usage of
the VO Admin Client Service through a graphical user interface. Similar
to the LSS from a functional point of view, this service provides two
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different sets of service methods as well. The first set connects to the
VO management related service methods the LSS exposes while the
second set comprises all service methods required to connect the GUI to
the VO Admin Client Service. In principle, there can be more than one
administraive authority acting coordinated with the LSS.

VO Storage Provider Service: This service represents an actual service pro-
vider. Besides the common service methods for SLA negotiation and
federation, the storage provider service offers methods through which
the actual storage provision service is made accessible to other VO mem-
bers. This includes methods for uploading data, querying the stored data,
downloading data and removing data from the service providers storage.

Customer Client Service & Customer Client GUI: This service differs
from standard VO Member Services only in that it does not provide a
service to the VO but only acts as service consumer. It is used to allow
interactive access to VO resources by providing a Customer Client GUI
to end users.

6. Stepping Through the Lifecycle Phases
Before entering the actual VO lifecycle, a user wishing to run a VO needs

a VO Admin Client Service (ACS) to which he can connect through the VO
Admin Client GUI. Once connected to the Admin Client Service, the lifecycle
of the VO is entered by discovering potential LSS providers. The user selects
one LSS provider and initiates SLA negotiation between the ACS and the LSS
resulting in an SLA established between the two services as shown in Figure 9.

Figure 9. Formation of a Virtual Organization

The relevant SLA details of the SLA negotiated between the ACS and the
LSS are shown in Figure 10. In order to populate the VO, the user adopting the
role of the VO administrator discovers and selects a Storage Provider Service
and a Customer Client Service. He requests the LSS (through the ACS) to
negotiate SLAs with both services. This results in a VO as shown in Figure 8.
The SLA negotiated with the Storage Provider Service contains two parts of
special interest, one covering the amount of storage provided and the other
allowing the acceptance of federated SLAs.
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<Metric name="NumberSupportedMembers" defn="cc:NumberSupportedMembersType">
<Target unit="MemberNumber" dialect="http://www.w3.org/TR/xquery/">
<SuccessMeasure>
$number = 1000

</SuccessMeasure>
</Target>
</Metric>

Figure 10. Metric for number of VO members

The acceptance of federation has already been shown in Figure 2; the amount
of storage provided can, in accordance with the NextGRID SLA schema, be
specified as shown in Figure 11.

<Metric name="ProvidedStorage" defn="cc:ProvidedStorageType">
<Target unit="GB" dialect="http://www.w3.org/TR/xquery/">
<SuccessMeasure>
$storage = 50

</SuccessMeasure>
</Target>
</Metric>

Figure 11. Metric for storage provision

As the Customer Client Service (CCS) has been introduced for the sole
purpose to consume resources within the VO without providing any, its SLA
only contains one relevant term which covers the acceptance of federated SLAs,
as already seen in the Storage Provider SLA. At this point the setup is done,
the identification and formation phases are completed and the operation phase
can begin. To demonstrate how collaboration between VO members can be
realized through SLA federation, we assume that the Customer Client Service
is searching for a certain amount of storage space. Therefore, the CCS queries
the LSS for resources available within the VO. After having selected a specific
resource, the CCS issues a collaboration request to the LSS for that resource
and the respective resource amount. This causes the LSS to create a federated
SLA covering the requested resource amount and establish it between the CCS
and the Storage Provider.

In order for the LSS to be able to create a federated SLA, a set of rules for
SLA federation must be specified. A simplistic approach could consist in using
the Storage Provider’s SLA template covering the full amount of storage (e.g.
50GB) that can be provided and establish it as a federated SLA. This, however,
would imply that, even in the case that only a small part of the available storage
space is requested (e.g. 5GB), the overall resource amount would always have to
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be allocated to the CCS. The approach adopted in the implementation presented
in this paper is slightly more sophisticated. We have recognized that the process
of federating an SLA could be driven to an arbitrary level of complexity, but
this is not a key research topic to be presented here. The approach for SLA
federation applied within this implementation relies on the basic rule to assign
the consumer role to the party requesting collaboration and using the SLA
template of the party assigned the provider role as root for the SLA to be created.
Thereby, the resource amount in the SLA template is adjusted to the requested
amount and the service consuming party is inserted in the SLA template. It is
important to note that this closely links the LSS’s tasks to resource brokerage as
the LSS has to keep track of the resource amount covered by federated SLAs.
A simple problem case can be constructed if the CCS has requested 25GB of
storage space granted by a respective federated SLA and another VO member
subsequently requests 30GB of storage space. The LSS hereby has to keep
track of the actual resource usage for a specific VO member in order to make
sure not to grant more resources than available through federated SLAs.

It is important to note that this approach entails a few implications as VO
members engage to accept federated SLAs from the LSS, which implies a trust
relationship between VO members and the LSS. However, there are as well a
few possible approaches to circumvent these implications. One possible way
to handle trust issues consists in the usage of a trusted third party federation
service responsible for the creation of federated SLAs. Another way would be
to allow VO members to reject federated SLAs received by the LSS in case the
resource amount allocated through federated SLAs exceeds the overall resource
amount granted to the VO through the SLA negotiated between a member and
the LSS. In the latter case, it has to be ensured, e.g. through a trusted third
party, that a reason for federation rejection is at hand.

Figure 12. Established federated SLA

Assuming the CCS has requested 5GB storage space, a federated SLA is
created by the LSS and established between the CCS and the Storage Provider
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by the LSS. The CCS is now able to collaborate with the Storage Provider based
on this SLA as shown in Figure 12.

Once the CCS does not wish to collaborate with the Storage Provider any
longer, the dissolution of the federated SLA is initiated. Similar to the federation
logics, the dissolution is subject to some basic rules to be defined as well. The
approach adopted in this implementation is to delegate the initial dissolution
initiative to the service consumer, as in this scenario only the service consumer
can decide when the collaboration can securely be terminated.

The last phase in the lifecycle of a VO is reached when the administrator
decides to dissolve the whole VO. Then the ACS triggers the dissolution of
all previously negotiated SLAs including the one negotiated between ACS and
LSS.

7. Conclusions
In this paper we presented an approach to the formation and operation of

Virtual Organizations on the basis of bipartite Service Level Agreements com-
bined with federation principles. The described model has been implemented
as outlined and its ability to operate has been demonstrated to the European
Commission. The demonstration shows that the proposed model for Virtual
Organizations ameliorates classical Virtual Organization’s deficiencies which
consist mainly in the lack of dynamics. It also reduces the complexity of Virtual
Organizations by dramatically decreasing the amount of negotiation which is
necessary to reach a Virtual Organization where every member is, in principle,
allowed to access services of each other member.

We have shown that different principles, like the negotiation protocol or
service federation, developed in the NextGRID project, can be successfully
applied to the area of Virtual Organizations. The resulting model combines these
principles to form a powerful concept. It is mainly built around an additional
component in Virtual Organizations, a Lifecycle Support Service, which acts
as a central management instance. It provides two functionalities to the whole
Virtual Organization: the management of membership and the management of
bipartite Service Level Agreements.

As it is always the case with centralism, when building large-scale VOs, this
approach clearly has its limits, since the LSS will certainly become a bottle-
neck. Bottleneck effects may appear when a certain number of VO members
is reached or, even with less VO members, when there is extensive negotiation
and federation happening. Precise figures for bottleneck effects have not been
investigated.
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[8] Hubert Hérenger and Stefan Wesner. VO Lifecycle Models. NextGRID Project Deliverable
P5.4.4, August 2005.

[9] B. Mitchell and P. McKee, SLAs: A Key Commercial Tool. In P. Cunningham and M.
Cunningham (eds), Innovation and the Knowledge Economy: Issues, Applications, Case
Studies, 2005, IOS Press, Amsterdam, ISBN: 1-58603-563-0.

[10] Web Services Agreement Specification (WS-Agreement).
http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-agreement.

[11] Web Service Level Agreements (WSLA) Project. http://www.research.ibm.com/wsla.

[12] S. van den Berghe, M. Surridge and T.A. Leonard, Dynamic Resource Allocation and
Accounting in VOs. NextGRID Project Deliverable P5.4.3, September 2005.
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1. Introduction
It is becoming increasingly clear that the approach of existing Grid middle-

ware, such as the Globus Toolkit, often does not efficiently enable application
development and execution in a Grid environment [7], due to the complexity of
the involved tasks.

Component-based programming [4] is currently the most promising ap-
proach to the programming of complex parallel Grid systems, easing problem
decomposition and separation of aspects. One of the most promising component
models in the Grid community is Fractal [5]. It offers a hierarchical abstract
component model, featuring component introspection/intercession capabilities.

A hierarchical component model allows to build large scale Grid-aware ap-
plications where highly specialized components built by software specialists are
easily composed to develop higher-level functionalities. The separation of de-
veloping roles is crucial to ease matching user-defined Service Level Objectives
(SLOs) and resource-specific Service Level Agreements (SLAs).

To comply with the “invisible Grid” [1] approach, hierarchical application
deployment should be completely in charge of the run-time, once the user-level
SLOs have been specified. To tackle this problem, we push forward the similar-
ity between parallel component models and Structured Parallel Programming
(SPP) [2], by devising performance models for component compositions and
exploiting them at deployment time. In Sect. 2 we define a form of performance
contract [10] tailored to hierarchical component applications communicating
streams of data through one-way asynchronous communications. Refer to our
article [6] for a discussion of related works.

A contract for a given application couples the performance model with user-
requested QoS. Our specification of a performance contract is as independent
as possible from the runtime characteristics of resources, and allows contract
composition in the very same way as new components are built wiring together
existing components.

With this definition of contract, in Sect. 3 we propose an O(n3.5) algorithm
finding the minimum resource requirements in terms of performance which
ensure the desired QoS, to be exploited successively in a SLA negotiation
phase.

The algorithm allows to specify SLAs between simple components and Grid
resources, and to quickly recompute these SLAs in case of dynamic reschedul-
ing [3]. Moreover, due to its modular structure, we envision its full exploitation
in components frameworks where a hierarchy of component controllers will
be in charge of autonomic behavior of applications [2]. Sect. 4 reports on the
experimental validation of the approach.
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2. Application Modeling
We model a component application as a directed graph, whose nodes repre-

sent computational components and edges represent one-way communications
(links between interfaces). The graph can be non-simple, i.e. an edge can
connect two or more nodes, and several distinct edges may link the same set of
nodes.

Nodes can represent sequential and parallel computations. A sequential node
has at most one active control flow (thread) at any time, while in a parallel node
two scenarios are possible: data-parallelism, where only one computation,
made up of several control flows, is active in the node, and task-parallelism,
where several computations are active, each one being an independent control
flow.

A computation can either start spontaneously, or be activated by one or
more data receptions from incoming edges. To simplify the model, we assume
that each incoming edge activates at most one computation in any node [9].
Computations can produce output data that activate further nodes through the
outgoing edges.

Nodes can be connected according to three different patterns: unicast (i.e.
one-to-one connection between two nodes), merge (i.e. many-to-one connec-
tion) and broadcast (i.e. one-to-many connection).

Performance Model. The execution rate for each computation, and the data
transfer rate for each input/output interface completely specify the application
state from the point of view of its performance, therefore we will call them the
performance features of our application.

In [6] a model for the dynamic behavior of such applications has been pro-
posed. The main result states that, if the dynamic system is ergodic, the steady
state behavior of the whole application can be described through a set of linear
balance equations. The proof is given in [9], while empirical evidence is shown
in [6].

These equations define the performance model of an application, describ-
ing the relations that hold among its performance features. With this approach,
a compiler exploiting simple annotations (provided by the component develop-
ers) can build automatically analytical performance models for complex graph
structures, obtaining the same predictive power provided by the performance
models for skeletons, but not limited to few, well-known skeletons. Note that
this model is completely independent from the application execution environ-
ment.

Performance Constraints and Requirements. Given the definitions of per-
formance features and performance model previously given, a performance
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constraint is defined as an inequality in the form

xi ≥ ci (1)

where xi is a performance feature (input, output or execution rate) and ci is a
strictly positive real number representing the desired operational value of the
feature xi. A constraint is satisfied (at runtime) if the measured value of the
associated performance feature (xi) is greater than or equal to the specified
value (ci).

Let a set of k performance constraints be given by the user. Such user-
provided constraints are called performance requirements. They represent
the user expected QoS of some components of the application at runtime. The
following question arises: “What values the other performance features should
assume at runtime to satisfy the performance requirements?”. Clearly, given
the interactions between the components, it should be possible, given few per-
formance requirements, to derive performance constraints on each features of
the performance model.

Deployment annotations. From the performance constraints, we can deter-
mine the set of candidate resources that can satisfy them and a suitable mapping
of components on the resources, by evaluating the match between component
computations and computing resources, and between communications and net-
work resources.

Computations can be characterized in terms of the work they perform per
activation (e.g. number of operations, MFlop/act, amount of data exchanged,
MB/act). We assume (ergodicity) that activation parameters are independent
from the actual values of the received data. Analogously, we can characterize
stream communications by their item size, or by the number of packets flowing
on a stream.

Several metrics are possible [8], and multiple metrics can be considered
simultaneously. The metrics outlined above are associated as meta-data to each
component. We will refer to them as deployment annotations.

We will generally call bandwidth the work that a resource can perform in the
time unit. Clearly, each computation metric has associated a resource bandwidth
(e.g computational bandwidth measured in MFlop/s, memory bandwidth and
I/O bandwidth in MB/s).

Part of the deployment annotations are actually provided by component de-
velopers, and part are automatically gathered and inferred from the application
structure by the compiling tools. We underline that developer knowledge is
needed only once, when shipping a new component, to provide a full set of
component annotations.

By analyzing deployment annotations, the deployment tools can instantiate
the abstract performance model for concrete resources, and thus evaluate any
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given mapping solution. Deployment annotations can include practical require-
ments (minimum hardware/software) to run a component. These constraints
ensure that the execution model described by the component annotations is valid
under a specific mapping onto the execution platform. Deployment annotations
avoid, for instance, that due to insufficient memory on the resource, memory
swapping effects invalidate the performance model of a memory-hungry com-
putation.

Performance Contract. We can now define the performance contract for a
hierarchical component model, as the way to convey users’ SLOs, program-
mers knowledge of the components behavior, and the application hierarchical
structure as a composition of components, that is as independent as possible
from the runtime resource characteristics.

The performance contract for a component, primitive or composite, is a
list of metadata containing the following items

the component performance model, provided by the component and/or
application developers;
the component performance requirements, provided by the end-user;
for each primitive component, deployment annotations for its computa-
tions, provided by the component developer (through profiling) or auto-
matic tools (through execution traces analysis);
for each composite component:

– a performance contract for the composite component;
– a mapping of its external performance features to the ones of the

inner subcomponents.
Clearly the performance contract for a component-based application is the per-
formance contract of its topmost component. A performance contract is said
to be assessed if the performance requirements have been propagated to each
component and the constraints for every performance feature has been calcu-
lated. This can be achieved with the algorithm we discuss in the following
Section.

3. Constraints Resolution Algorithm
In the following we describe the algorithm computing an assessed perfor-

mance contract. It is a three-step recursive procedure whose purpose is to
deduce an assignement of values to all the features of the application model,
which (1) satisfies all contract and resource constraints (2) chooses a feasible
solution that optimizes application performance, (3) exploits the hierarchical
structure of the application model. This goal is accomplished managing mul-
tiple low-level SLA features to match one or more high-level SLOs. The input
of the algorithm is a performance contract with a performance model of size
n, the number of performance features (either input, output or execution rates).
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The balance equations (performance model) can be written in matrix notation,
resulting in an homogeneous system. For more details on this model, please
refer to [6].

Let c ∈ R
k denote the vector of the performance requirement values, and

x ∈ R
n indicate the performance features. The vector xc ∈ R

k represents the
features constrained by the user requirements, and xuc ∈ R

n−k indicates the
unconstrained ones. For simplicity, the elements of x (and correspondingly,
the rows of the performance model matrix) are ordered in such a way to have
x = [xuc|xc]T , in order to express every performance feature as a function of
the constrained ones. Exploiting the Gauss-Jordan elimination algorithm (first
step), the performance matrix is row reduced into block-echelon form. This
representation allows to recognize if the set of constraints is well specified,
over- or under-specified. In general a performance model with n performance
features and m equations is fully specified by a set of k constraints if the resulting
matrix and system have the form

[
I(n−k)×(n−k) D(n−k)×k

0(m−n+k)×(n−k) E(m−n+k)×k

] [
xuc

xc

]

= 0 (2)

Note that m− n + k can be zero, and in that case the form of the coefficient
matrix is

[
Im×m Dm×(n−m)

]
.

The set of solutions of the system is a vector subspace of R
n. We call

the dimension of the solution space the number of degrees of freedom of the
application. This value determines how many constraints have to be provided in
order to derive expected values for every performance feature. The degenerate
case of a solution space with dimension 0 (the only solution is the null vector)
predicts a deadlocking steady-state, in which no computation or communication
can proceed. Clearly, only positive values of the rates are meaningful, so we
regard any assignment of positive values for the vector

[
xT

uc xT
c

]T ∈ R
n

that is a solution of the system, as a possible “operation point” for the modeled
application.

Since the set of possible operation points is infinite (excluding the deadlock
case), we can add a further optimization constraint to the problem: find the
cheapest solution among the admissible ones. Our problem is transformed in
the following linear optimization problem (second step):

min
∑

hi s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xuc + Dxc = 0
Exc = 0
xc = c + h
xuc ≥ 0
h ≥ 0

(3)

where the first two matrix equations are simply derived by unrolling the matrix-
vector multiplication in (2), the user constraints must be satisfied (the vector
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inequality xc ≥ c was rewritten as an equality using the positive slack variables
hi), and the distance (

∑
hi) between user specified constraints and actual values

for the constrained variables should be minimized.

Application to Hierarchical Compositions. When applied to a hierarchical
composition, the contract assessment algorithm is recursive: given an applica-
tion (i.e. its topmost component) and its performance contract, the algorithm
computes the expected values of the performance features using the perfor-
mance model (first and second step), and maps them to the interfaces of each
sub-component. Then it can be applied to the performance contract of each sub-
component (recursive step), using as input requirements the computed values
of rates at component interfaces, to determine the performance values associ-
ated to each module of the sub-component. Applied recursively, the algorithm
can compute the performance requirements for every simple component of the
application.

Complexity of the algorithm. The computational complexity of the pro-
vided algorithm is polynomial in time, w.r.t. the input size n of the contract
description. For a basic component we have T (n) = TGJ(n)+TLP (n), where
TGJ(n) is the time complexity of the Gauss Jordan algorithm (first step) O(n3),
and TLP (n) is the complexity of the Linear Solver (second step) O(n3.5) for the
well-known Karmarkar algorithm). For a complex component we have that the
contract size n is the sum of the complex part n0 and of the contract size of the
sub-components ni, and the time complexity results (T (ni) is the complexity
of the recursive step on the ith sub-component):

T

( k∑

i=0

ni

)

= TGJ(n0) + TLP (n0) +
k∑

i=1

T (ni)

Since
∑

ni = n ⇒
∑

nk
i = O(nk) ∀k ≥ 1, we conclude

T (n) = O(n3.5)

The requirements of an application could vary at run-time, hence the per-
formance contract is not fixed during the execution. When changes affect the
performance required from a component, the contract assessment algorithm
has to be applied at run-time, to derive the new assignments for all compo-
nents. Our algorithm meets the requirements for on-line use, as it has a low
computational cost, and it can be distributed over the management hierarchy,
(computing in parallel the subproblems generated by the recursive step) among
the components constituting the application.

Typical values for n (that roughly correspond to the total number of com-
ponent interfaces in the application) are in the range between few tens up to



382 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

several hundreds, for reasonably sized Grid applications. The algorithm run-
ning time is usually a small fraction of the total time needed to determine the
application mapping, and start the application (the longest parts consisting in
retrieving all candidate resources and staging the applications binaries onto
remote machines).

Deriving SLA parameters. The user specifies the overall performance re-
quirements, describing the QoS goal for the whole application. Components,
in the general case, will have component annotations attached, describing the
steady-state relationships between activation of computations and of output in-
terfaces (see Sect. 2). The component annotations should be given just once,
by the component developer, and belong to the component’s metadata.

The work performed by a computation can be expressed as an array of metric
values, l = [l1, . . . , ln], either obtained by the developer (code profiling) or by
the user from historical records (by execution on reference resources).

With a simple metrics of work l (e.g. MFlop/act), it is straightforward to
translate a performance constraint c (e.g. act/s) into a resource bandwidth
requirement w (MFlop/s) and vice-versa: w = l · c.

With multidimensional metrics of computation and communication, given a
work vector l = [l1, . . . , ln] describing an activation, and a bandwidth vector
w = [w1, . . . , wn] describing a resource, the equation is easily extended if we
write it with respect to the service time, ts(l, w) = 1/c,

ts(l, w) =
n⊕

i=1

li
wi

(4)

Here the combining operator
⊕

acts on metric components according to the
kind of work they measure. It is a sum operator when the metrics deal with
sequentialized work, and a maximum when work can be carried out in parallel.

4. Experimental Validation
In the following, a demonstration of the applicability of the proposed ap-

proach to select resource for a test application is shown. The application is the
one depicted in Fig. 1. W.r.t. a group of 12 pictures (GOP), the performance
model for the application fixes the following relationships among execution
(CXe), input (CXi) and output rates (CXo) of the various computations. The
model has exactly one degree of freedom.

C1e = C1o = C2i = C2o = C3i = 12 · C3o, C3o = C4i = C4o = C5i

Suppose that the user wants 1 frame/s at the last stage (the constraint is
expressed by C5i ≥ 1/12, because each input for C5 is composed by 12 frames).
Applying the performance model, we can derive the computation and transfer
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Figure 1. Graph of the render-encode application

rates for each computation and communication that are required to satisfy the
contract.

We measured the weight of computations in MFlop per task and MB trans-
ferred to/from memory, and the weight of communications by their size only (see
Tab. 1). We then expressed the service time applying equation (4), with work de-
scription l = [lMFlop, lMB]T , resource bandwidths w = [wMFlop/s, wMB/s]T

and sum as combining operator.
Imposing the constraint and solving back w.r.t. w, we can derive for each

computation node a set of matching resource requirements.
As an example, the requirement for stream S2 = C2o is to carry 1.19 MB

messages with minimum rate 1 message/s, thus a link providing 9.52 Mb/s is
sufficient. Likewise, the test application will never scale above 10 frames/s
with a 100 Mb/s network, and needs to be redesigned, if higher performances
are required.

In Fig. 2, two execution runs are displayed with mapping onto homogeneous
(left) and heterogeneous (right) resources, and the same performance contract.
The mappings computed using the performance model fulfill the constraints,
for most of the application runtime. We notice that the application workload
(the smoothed curve) deviates from that measured on the first movie frames,
being heavier in the middle of the computation. This occurs because, in or-
der to build the model, we sampled the performance on the first frames of the
movie, but the application workload slightly changes with the evolution of the
movie. This is unavoidable in complex applications, and may require dynamic
rescheduling [3]. Although the heterogeneous run shows greater variance in
the achieved bandwidth, the average bandwidth is comparable with the homo-

Table 1. Deployment annotations for the application.

Component C1 C2 C3 C4 C5

Processor i686 i686 i686 i686 i686
Memory (MB) - 64 256 64 -
CPU Work - 3307 - 52 -
Mem. Work - 302 - 104 -

Stream S1 S2 S3 S4

data type param pic GOP zip
data size 54 1.19 14.24 2

(B) (MB) (MB) (MB)



384 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

Figure 2. Execution results: left) homogeneous cluster, Athlon XP 2600+, right) heteroge-
neous resources (9 P4@2GHz, 1 Athlon XP 2800+, 1 P4@2.8GHz).

geneous case. This provides evidence that the performance model properly
handles heterogeneous resources.

5. Conclusions
We have described a way to specify performance models and contracts for

hierarchical component-based applications, and we presented an algorithm ex-
ploiting component annotations to translate a user-specified performance con-
tract into elementary resource requirements. Our approach is suitable to com-
plete automatization, and can easily be adopted in component runtime environ-
ments, to determinate the resource SLAs needed to provide a stated QoS. The
obtained results match our expectations, as the algorithm handles homogeneous
and heterogeneous sets of resources, and it runs fast enough to be adopted for
runtime reconfigurations.
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1. Introduction
There has been significant interest in utilizing an economic paradigm for ex-
changing Grid resources and services [3]. This approach provides the capability
to schedule access to services based on a market mechanism (such as auctions),
leading to a fair and efficient approach to sharing high demand resources. Most
existing approaches in this context rely on a centralized broker, and are im-
plemented alongside an existing Grid middleware. An alternative approach,
which does not necessitate centralised brokers, is the Catallaxy mechanism
of von Hayek [5]. Catallaxy is a coordination mechanism for systems con-
sisting of autonomous decentralized agents that make use of a “free-market"
for goods exchange. It enables prices within the market to be adjusted based
on negotiation and price signalling between agents [4]. Catallaxy provides a
way to inform the individual (agent) about the knowledge that may be con-
tained within other agents. Exchange of information between agents leads to
the generation of prices which reflect the value each individual (agent) assigns
to the respective good [1]. Catallaxy therefore leads to the development of
self-organizing individuals (agents) that are highly dynamic – thereby lead-
ing to systems which behave in a Peer-2-Peer fashion. Such an approach is
particularly suited to “Open Systems", where detailed knowledge about other
agents may not be known apriori. Service Level Agreements (SLAs) provide
a contract between an application user requiring services/resources, and appli-
cation providers determining what should be made available for external use.
To enable service/resource sharing/usage in application environments, SLAs
may be used to define: (a) requirements that such an application would place
on services (and resources) owned by a third party; (b) check whether these
requirements have been met during use. An SLA also specifies the penalty that
a service provider may incur if terms in the SLA are violated.

Our approach utilizes a policy from which the configuration of individual
components within the system is derived. Hence, self-managing services make
use of Service Level Agreements (SLA) as a way to discover resources that
guarantee an adequate Quality of Service (QoS), and provide a management
interface to monitor and control service life-cycle. Social utility is used as a
basis to evaluate the effectiveness of the approach – and provides a measure of
SLA compliance in service allocation and use.

This paper demonstrates the use of SLAs in Catallaxy-based markets and the
experience of using and integrating SLAs within a decentralized economic self-
organisation mechanism for service/resource allocation. Section 2 introduces
the social utility economic index and the composition process used to derive
this index. Section 3 describes the application scenario and the SLAs used.
Section 4 gives an overview of SLAs at the application layer, while Section
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5 contains a discussion of the evaluation framework and experimental results.
Conclusions are presented in Section 6.

2. Social utility - a composite index
Figure 1 describes the layers within a performance metrics framework for on-
demand service allocation, and shows the single composite index – “social
utility" – on top of these layers. Social utility is a factor considered in macroe-
conomic models, and is used to measure the “welfare" within a system as a
whole. This term originates in social systems, where the benefit to a group or
society is considered to be more significant than benefit to an individual. In a
social system, it is possible to make a distinction between the maximum utility
of and the maximum utility for a group of users/providers. The latter is the point
where each individual has attained the maximum possible private satisfaction.
The former refers to the maximum utility of the group or society as a whole,
not of individuals. Only the second type can be treated by the economist;
he can consider only the wants of individuals who are dissimilar and whose
satisfactions therefore cannot be added up to yield a measure of the maximum
utility for the entire group or society. Social utility therefore provides a useful
way to measure the “utility" of a group, rather than an individual. Figure 1 also
shows a view of the data analysis at different layers and how a single composite
index is derived. Our intention is to be start from performance metrics that
can be easily measured, and combine these to determine social utility. In this
way, it is possible to use raw data that can be easily measured for individual
components within a system, and process it to generate a metric that could be
used to effectively measure the benefit to a group/system as a whole.

Figure 1. Layer metrics - Logical view of composite index

Performance/technical metrics include easy to measure parameters which can
subsequently be aggregated. Technical metrics include: (a) efficiency measures
– number of requests, number of acceptances; and (b) time metrics – service
provisioning time and job execution time. Some examples include: (i) Num-
ber of Requests: these include metrics that measure demand, and are counted
as the number of requests for service execution; (ii) Number of Acceptance:
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the number of successfully acknowledged requests for services; (iii) Service
Provisioning Time: the time of service usage in one transaction, including the
on-demand request time, discovery, negotiation, and execution times; (iv) Job
Execution Time: time to execute the on-demand service. From figure 1, the next
layer from the bottom provides a first integration stage based on individually
measured values. On DeMand availability (ODM) is a composite of indicators
obtained at the application layer within one experiment run, and can be obtained
as in equation (1). ODM lies between [0, 1], where an optimal on-demand ser-
vice allocation mechanism would have an ODM=1. The Standard deviation
(std u) is obtained as in equation (2).

ODM =
1
2
(mean(service.prov.time) + mean(job.exec.time)) (1)

std u =
1
2
(std(service.prov.time) + std(job.exec.time)) (2)

The top layer in figure 1 presents the economic utility value used for comparing
different alternatives. The social utility is based on a loss function – a full
description of this function is presented in [8]. The loss function is calculated
using two indicators: the composite indicator ODM and the standard deviation
(std u) – both considered as stochastic variables that aggregate the raw metrics.

L = α((1 − ODM)2 + std u2) (3)

where “L" is the social utility, and α is a weight between [0, 1]. In our exper-
iments α is set to 0.5. “L" lies between [0, 1], where an optimal social utility
would be close to zero.

3. On-demand Service Allocation
Current Grid Computing applications utilize static resource infrastructure which
is usually connected by physically stable links. The shift to a pervasive Grid
demands a more dynamic infrastructure, leading to applications built as complex
services accessed on demand. Figure 2 shows our application that makes use
of a Catallaxy-based market.

We use on an economic Service Oriented Architecture implemented using
the Grid Market Middleware (GMM) – a resource allocation middleware which
incorporates decentralized economic models [2]. The GMM is accessed by an
application as a Web Service, and provides an access point to a market, enabling
the application to negotiate (and subsequently enforce) SLAs. The application
does not have to know details about the operation of the market, only the location
of the access point, and the message format to access it. The GMM exposes
the interface to the access point and describes these message formats.
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Figure 2. Cat-DataMining prototype - agents and Grid Markets Middleware

The GMM also provides mechanisms to register, manage, locate and nego-
tiate for services and resources. It allows trading agents to interact with each
other and engage in negotiations. Furthermore, the middleware offers a set of
generic negotiation mechanisms, and provides a plug-in architecture enabling
additional negotiation strategies to be included. The GMM has a layered ar-
chitecture, which allows a clear separation between platform specific concerns
from the economic mechanisms, to cope with highly heterogeneous environ-
ments. A detailed description of both the design and implementation of the
GMM architecture can be found in [2].

3.1 Data Mining Services
In the Cat-DataMining prototype, the basic problem addressed is the dynamic
allocation of CPU resources for the processing of low-level data, to support
transformation models that compress/summarize the data (for example, produce
a short report), make it more abstract (for example, a descriptive approximation
or model of the process that generated the data), or make it more useful (for
example, a predictive model for estimating the value of future cases). The
prototype makes use of specific data-mining methods for pattern discovery and
extraction. This process is often structured into a discovery pipeline/workflow,
involving access, integration and analysis of data from disparate sources, and
uses data patterns and models generated through intermediate stages. The data
mining algorithms have been derived from the WEKA toolkit [10].

Figure 2 shows also the prototype components and related GMM agents as
buyers and sellers in the Grid service and resource markets, and consists of only
one service invocation. The prototype is composed of four main components:
the Master Grid Service (MGS) – a Complex Service requestor, the Catallactic
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Access Point (CAP), the Data Mining Services – as types of complex and basic
services respectively, and job execution resources - as computational resources.
The complex service agent acting on the request of MGS is the buyer entity
in the service market, and the basic service is the seller entity in the service
market.

A complex service could be represented by a proxy, which needs basic ser-
vice capabilities for execution – with support for a service selector instance.
Complex services do not need to have details of the resource layer. A basic
service is split into a basic service logic and a resource allocator. The logic is
able to negotiate with the complex service and to translate the requirements for
service execution on a resource instance (e.g. CPU and storage, etc.) A resource
allocator gets the resource specification and broadcasts the respective demand
to the local resource managers. This leads to the formation of resource bundles
and requires resource co-allocation. In thie context, a bundles is an n-tuple of
resource types (e.g. a 3-tuple would be: CPU, storage, and bandwidth); co-
allocation describes resources for one single service transaction from various
local resource managers simultaneously.

The Data Mining basic service is the buyer entity in the resource market, and
the Local Resource Managers are the seller entity on the resource market. The
main functionalities of basic service agent at the resource market are: (i) co-
allocation of resources (resource bundles) by parallel negotiation with different
resource providers (local resource manager entities); (ii) informing the complex
service about the outcome of resource negotiation.

4. SLAs at application layer
Currently, SLAs are defined in a static manner, i.e. the terms within an SLA
must adhere to strict constraints, and are monitored during application execu-
tion – such as in WS-Agreement. However, within many applications, it is
often difficult to define such constraints very precisely, thereby leading to a
large number of violations. There is a need to modify an agreement that had
already been established, especially if the agreement is used at a time much
later than when the agreement had been defined. These requirements relate
to comparing the cost of re-establishing a new agreement vs. being able to
adapt an agreement that is already in place. Secondly, there is a need to support
flexibility in the agreement if an agreement initiator is not fully aware of the
operating environment when the agreement is defined. In this case, the agree-
ment initiator may not have enough information to determine what to ask for
from a provider. This is likely to be the case when an agreement initiator or
provider operates with imprecise knowledge about the other party involved in
the agreement.
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4.1 SLAs in Cat-DataMining
The data mining scenario of the Cat-DataMining prototype involves an MGS
which needs to run a data mining job. The MGS sends an AgreementOffer
(AO), see Listing 2, based on the AgreementTemplate (AT), see Listing 1,
downloaded from the CatallacticAccessPoint (CAP), to the CAP to find a Data
Mining service. The CAP provides an entry point into the market and allows
existing Grid applications to make requests directly to it. The Complex Service
Agent, acting on behalf of the MGS (as a complex service) chosen by the CAP,
negotiates with the Basic Service Agents, in the GMM environment, for Data
Mining services. WS-Agreement is used in the Cat-DataMining prototype, and
forms the basis for choosing between multiple service and resource providers.
When using WS-Agreement in our prototype, several parts need to be spec-
ified [1]: agreement name, the agreement context (parties to the agreement),
reference to the service(s) provided in support of the agreement, and the life-
time of the agreement. Agreement terms, which describe the agreement itself,
can contain the service description terms, which provide information needed
to instantiate or otherwise identify a service to which this agreement belongs.
Finally, guarantee terms which specify the service levels the parties agree to.
An example of an Agreement Template and Offer used by Cat-DataMining is
provided in Figure 3 and in Figure 4.

Figure 3. Agreement Template Figure 4. Agreement Offer

5. Evaluation and results
This section presents an evaluation of the Cat-DataMining prototype, by

using “social utility” described in Section 2. This parameter is obtained by
combining the raw data collected during the experiments. The purpose of the
evaluation process presented here is to see how the variation of the budget
influences the distribution of welfare through the community of buyers and
sellers involved in the Cat-DataMining application – and as measured using the
social utility index. This welfare distribution is valid for both users’ application,
which provides the budget, and the agents deployed at the middleware, which
make use of the budget. The hypothesis is that the proposed Cat-Data Mining
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prototype achieves a fair distribution of social utility between the participant
agents.

To be able to use economic concepts, it is necessary to specify a virtual policy
maker – essentially a logic entity whose functionality is implemented via the
Catallactic Access Point (CAP) module within the prototype. The role of the
policy maker is to minimizing inequality and maximise the fair distribution of
gain. In our metric framework, the equity metric (equity) is introduced within
the SLA contract as a term to measure the behaviour the Catallaxy mechanism
from the perspective of the application user. A CAP makes use of the client’s
application budget in a fair way (i.e. without any predefined preferences for
any services) within the market through the complex service agent. The equity
metric can be obtained as in equation (4) – where agent satisfaction is a metric
measured at the GMM level and presented in [8]:

equity = 1 − agent satisfaction (4)

Agent satisfaction measures the utility gained by an agent in a single trans-
action, which is the difference between the lowest price he is willing to pay in
this transaction, and the final price of the agreement. It is defined as a ratio
between the subjective transaction value and the budget. If this difference is
greater, the gain is better. The agent’s gain has to be fair, and the agent must
not speculate by using all his budget for buying services – as by doing this, the
agent’s satisfaction is high (towards 1), while the equity metric, the fairness
view from the user’s application perspective, is low (towards 0). The (client)
user’s satisfaction is higher by paying less than the budget (which is the maxi-
mum price the user’s application can buy a service for), if agent satisfaction is
lower, but still the agent has a gain.

A description of parameters measured within the Cat-DataMining prototype
is presented in [6]. The results presented in this section consider only metrics
measured at the application layer, while economic parameters (such as overall
cost of computation or data access) and other metrics, measured at the mid-
dleware layer, are not taken into consideration - so their values will be zero.
Therefore, the parameters considered are: total time within one transaction of
an experiment – service.prov.time and the job execution time – job.exec.time.
Experiments make use of ZIP (Zero Intelligence Plus) agents [7]– as economic
agents within the GMM; these agents use a gradient algorithm to set the price
for resources. In order to run the tests, we setup controlled experiments de-
ploying several instances of the GMM in a Linux server farm. Each node has
2 CPUs (Intel PIII, 1 GHz and 512 MB of memory). The nodes in the farm are
connected by an internal Ethernet network of 100 Mb/s. We consider three ini-
tial parameters to start the prototype with: (i) the number of prototype instances
to run, (ii) the delay between each instance run, and (iii) the budget the client
has for the specific data mining service needed. We also consider the data set
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needed to be executed as 1 KB and the data mining service needed to run the
application job as J48 (from WEKA). This is deployed as a Web Service in an
Apache Tomcat container. The scenarios for the tests are presented in Figure 5,
in which a group of two tests running in two different conditions are specified.

Figure 5. Experiment results - final index (social utility)

L must lie between 0 and 1 – a system behaves better if L is closer to zero (0).
The main observation following the results presented in Figure 5 is that system
behaves better when the budget is bigger under similar conditions: i.e. number
of instances running in one experiment, and the delay between each user’s
application transactions. The factor L also shows the fairness of the system
through the distribution of welfare among the population (the “agents"). By
varying the price, one can see a fairness of the negotiations and the stability of
the market – as the number of agents trying to speculate on price is reduced to
minimum. A reduced standard deviation is lower it shows again that there is
low speculative behaviour of agents on the market, and negotiations converge
in a short space of time.

6. Conclusions
Details of using Service Level Agreements (SLAs) within the context of a
Catallaxy-enabled “proof-of-concept" prototype have been presented, where
the dynamic discovery of services and resources, and the selection of a partic-
ular service instance, are based on Catallaxy-based markets. The design and
implementation of an applications that could operate within such a market –
referred to as the Cat-DataMining application – has been presented.

An evaluation framework using economic concept based on social utility
is used, and the results obtained are based on a decentralized economic self-
organisation mechanism for on-demand service allocation in application layer
networks.
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Abstract The calculation of the Implied Volatility of stock options is a computationally ex-
pensive process which in general exceeds the resources available at a customer’s
site. Financial service providers therefore offer the required Implied Volatility
services, adapting dynamically their own resource consumption to the customer’s
demands. The success of such a business model relies on carefully negotiated
and observed Service Level Agreements between the different parties involved.
The NextGRID project, driven by the adaption of several business scenarios to
next generation Grid technologies, has designed and implemented an Implied
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scenario and the different core components which we integrated to realise the
Implied Volatility framework.
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1. Introduction
The development of next generation Grid concepts and methods and the ap-

plication of business scenarios to evaluate those are two major research and
development areas of the NextGRID project [9]. One of the business scenarios
is the calculation of Implied Volatility parameters for stock options (cf. Sec-
tion 2). Since previous experiments revealed the potential business benefits of
the application of NextGRID’s Service Level Agreement Driven Dynamics con-
cept [10] to this scenario, we integrated and extended NextGRID components
(cf. Section 3) to realise the NextGRID Implied Volatility Framework described
in Section 3. This framework shows some differences compared to other solu-
tions, but offers convincing arguments for other projects to already make use of
it (cf. Section 5). The development so far is promising and encourages future
investment into maturing the existing solution (cf. Section 6).

2. Business Scenario
2.1 An Introduction to Implied Volatility

Within the stock market, stock and stock options can be purchased. Stock
signifies an ownership position within a corporation. Options represent an
option to buy (in the case of a call option) or sell (in the case of a put option) a
set amount of stock from/to a third party at a set price (the strike price) in the
future (the maturity date of the option). An option is purchased from the third
party and if it is profitable on the maturity date (for example, the strike price of
a call option is less than the current value of the stock, allowing the holder of
the option to buy the stock more cheaply than would otherwise be possible) it
will be exercised - otherwise it will be left to expire.

When the stock market is open, stocks and option prices are constantly being
updated. Stock options are normally priced using the Black Scholes model.
This equation contains a volatility parameter which can not be observed in
practice. There is a one-to-one relationship between the theoretical price of a
stock option and its volatility. Unfortunately there is no closed form solution for
implying the volatility from the stock option price. If the volatility is known,
trades can be executed to take advantage of volatility spikes. The Implied
Volatility must be calculated using a numerical method; a Newton-Raphson
iterative process is normally used, which is computationally expensive. The
peak rate of the option market is 120,000 prices per second.

2.2 Current Implementation
The current implementation of this service relies on software being deployed

on a local machine which is then hooked into a constant market feed. The
limitations of this service are on the number of options which can be monitored
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at any time. As the number of options monitored increases the processing
power required to calculate volatility increases exponentially, rapidly exceeding
available resources.

2.3 NextGRID’s Financial Service Scenario
In the NextGRID Implied Volatility scenario there are four actors: the Fi-

nancial Customer, the Financial Provider, the Compute Provider, and the Data
Provider.

Instead of the Financial Customers having the software running on a local
machine or on one supplied by the Financial Provider they will have access to a
Grid Portal where they can search for financial services (Implied Volatility being
only one such service). They may also browse what Data Feeds are available
to supply these services. When a Financial Customer selects a service he will
be offered a choice of available Service Level Agreements (SLAs) [6] with
the corresponding Financial Provider and will then choose the most suitable.
The completion of the SLA negotiation will stimulate the Financial Provider to
discover from the Grid the necessary Compute and Data resources and set up
the corresponding SLAs with Compute and Data providers (see Fig. 1 for the
SLAs being negotiated between the different actors). Once all the agreements
are in place the necessary software will be deployed onto the chosen compute
resource, the chosen data resource will be connected and the subsequent output
data stream will be supplied to the Financial Customer.

Financial
Service

Financial
Customer

Financial
Service Provider

Compute
Provider

Data
Provider

Compute
Resource

Data
Service

Figure 1. SLA relationships between parties

One essential customer requirement in the given scenario is high reliability,
which implies the fast and correct response of the system to failure. As an
example, one could imagine the partial or complete failure of the resource
provided by the Compute Provider. In the current implementation this usually
would mean either significant down time or the switch over to a shadow resource
which has been mirroring the primary service. In this scenario the failure of the
compute resource will be detected and the SLA between the Financial Provider
and the Compute Provider will be breached. The Financial Provider will initially
halt the supply of the data feed, discover a new suitable compute resource, agree
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a new SLA with the new Compute Provider and deploy the software. The data
feed may then be re-started pointing at the new compute resource which will
then begin supplying the Financial Customer with the output data stream. From
the point of view of the customers the SLA breach will only affect them in terms
of a short delay while the Financial Provider switches Compute Providers.

The main driver for designing and implementing a framework (cf. Section 3)
to fulfil the requirements of the scenario are the business benefits for the different
actors: Financial Customers can now operate through a single access point (the
Grid Portal) with a large range of services and smaller customers have access to
a market not previously available. In case of the Financial Provider new revenue
streams are created, specialisation in providing financial services not hardware
or data expertise is now easier, and potential penalties due to breaching an SLA
are reduced or prevented. And also the Compute and Data Providers can create
new revenue streams because of the possibility to dynamically provide services
to new Financial Providers.

3. The NextGRID Solution to dynamic SLAs
The two core components of NextGRID’s Implied Volatility Framework are

the NextGRID SLA Framework and the Universal Dynamic Activity Package
(UDAP), which are both central entities of the NextGRID architecture [10].
The following two sections describe these components and their contributions
to the architecture outlined in Section 3.

3.1 NextGRID SLA Framework
During the runtime of the NextGRID project a negotiation framework for

Service Level Agreements has been developed [3]. The design of this frame-
work is based on requirements from industrial applications which have been
collected and analysed within the project. Based on this design, a proof-of-
concept SLA Negotiation Framework implementation has been realised which
is used to validate NextGRID’s concepts and principles. This framework to-
gether with UDAP is the backbone of the Implied Volatility Framework.

Fig. 2 shows the design of the SLA Negotiation Framework. The two core
components are Negotiators located at each of the business parties, the Financial
Customer and the Financial Service Provider. These Negotiators are directly
communicating and are responsible for Service Level Agreement negotiation in
the NextGRID SLA Framework. NextGRID has chosen the so-called Discrete-
Offer-Protocol for negotiation [10], which does not intend any refinements of
negotiation parameters. In the beginning, the Customer Negotiator sends a
request for an offer (a bid) to the Service Provider Negotiator. A bid has the
same structure as an SLA template, but with empty information tags (service
provider details, price, etc.). The Service Provider Negotiator has to check
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Figure 2. The NextGRID SLA Framework

whether or not it is able to provide the requested service. For that purpose it
checks the SLA Template Repository (where Service Providers store their own
service descriptions) for matching templates. If such a template exists, it has to
be checked whether the current system status allows to offer this service to the
Customer. The respective component – the SLA Constraint Checker – retrieves
this information based on the selected service template from the System Status
Monitor and from the Business Level Objective (BLO) Handler [4]. The BLO
Handler is the component that has knowledge about the business preferences
of the Service Provider (e.g. "prefer customer A to customer B", "maximise
profit", "maximise resource usage", et cetera). Based on this knowledge, the
SLA Constraint Checker validates the possible offer, and, if possible, advises
the Service Provider Negotiator to fill the Customer’s bid with the required
information and send it back as an offer. Now the Customer has to decide
whether to accept or reject an offer. In case of an acceptance, the Service
Provider is informed and retrieves the SLA offer signed by the Customer. To
become a valid SLA, the SLA offer has also to be signed by the Service Provider
and a copy has to be sent to the Customer. Now each party has an SLA document
signed by both parties. This SLA is stored in the SLA Repository component.
After the negotiation process, the Service Supervisor component on the Service
Provider’s side is informed that a new SLA has been agreed upon and it starts
to configure the system and the service(s) accordingly.

Please note that not all components of the framework have been implemented
yet, since it was important to check the validity of the negotiation protocol first,
a step that was possible with just a subset of the components.
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3.2 UDAP
The Universal Dynamic Activity Package brings a new uniformity and co-

herency to managing activity information on a Grid. In the current state of
Grid architectures, information about activities is fragmented and dispersed.
Activity information, such as resource usage, security data, activity state, data
requirements, et cetera, is currently captured using a variety of schemata and it
is stored in different ways and by different logical components. This dispersion
of activity information leads to management, security, and logistical overheads
in discovering, accessing, and using that information. UDAP aims to bring all
of the information fragments that are associated with an activity, regardless of
the various schemata that are used to describe and capture these fragments, into
one logical package.

The core of the UDAP model is the UDAP Document defined by the UDAP
package, which is not discussed in detail here. The UDAP Manager is the
entity that manages information in the UDAP Document. The UDAP Manager
should have a standardised public interface that allows any Grid component
to invoke its management functions for read, update and append operations of
activity information. A UDAP Client is any Grid component that uses and/or
produces activity information. UDAP Clients invoke the public management
interface of the UDAP Manager for read, update and append operations of
activity information. A UDAP Client can subscribe to the interface of a UDAP
Manager, in order to receive notification of activity information based events.
The subscription of a UDAP Client may be conditional, where the condition
dictates the type of activity information based event that the client is interested
in, e.g. "notify me if the state of the activity changes to running" or "notify
me if the resource usage of the activity has exceeded the budget of the activity
owner". An overview of the component’s interactions is provided in Fig. 3.

3.2.1 UDAP applied to Implied Volatility. In this paper we will apply
UDAP to the presented scenario for two purposes. On the one hand, Compute-,
Data, and Financial Service Providers will be discovered. On the other hand,
we will track a negotiated SLA to evaluate Providers (their QoS) as well as
Customers. This means that UDAP is independent of the provider and the cus-
tomer and lives in a separate third domain (see Fig. 3; different colours illustrate
different domains). Nevertheless for other scenarios, the UDAP package could
be used in other ways, which allows UDAP to participate either on the customer
or provider side.

3.2.2 UDAP SLA Evaluation. In a case where a UDAP user discovers a
list of providers suitable for its purposes, it might be not enough to simply select
the fastest or cheapest one. The UDAP user might want to order the providers
additionally based on experience, either its own experience or experience other
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Figure 3. UDAP components and their interaction

users have made. The same yields for the provider, which might want to make
different offers (SLA Templates associated with the discovery result) depending
on experience with this particular user. We call this the Quality-of-Service
(QoS) of a provider respectively customer. For determining the QoS of a party,
an evaluation system should be capable of tracking various SLAs, which belong
to one party. This means this component could appraise a party depending on
the history of its negotiated SLAs and associated QoS information.

Within the UDAP discovery step, it might be required to negotiate a SLA
before consuming this service. UDAP could be used to track these negotiated
SLAs for later evaluation. An SLA Activity Tracking instance could be instanti-
ated by either the customer or the provider of the service via the UDAP Manager
providing the negotiated SLA. Afterwards, the other party has to be informed
about the location of this instance. Now both parties are in the position to ap-
pend new information to this SLA Activity Tracking called "Rankings". These
items contain an overall integer representation of the satisfaction of the other
party’s QoS; additional statements of the other party like "violated an SLA" or
"has not paid the bill" could be appended, too. The evaluation component could
later on query UDAP to return all SLAs where a particular party is involved.
This brings the evaluator in the position to appraise a party by building the
average over the provided satisfaction values. So, if a customer would like to
order a list of providers, it could simply go to the evaluation component and
retrieve the required information.
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In case that some providers or customers do not want to publish their con-
tracts, the presented evaluation system is still fully functional. If parties reject
to support the system, no Rankings about their SLAs will be tracked and the
SLAs will not be taken into account for evaluation.

4. Architecture
The NextGRID Implied Volatility Framework design aims to harness the

Grid to allow fluctuating demand to be met by available resources on the Grid.
In this section we describe and picture (cf. Fig. 4) the architecture of this
framework.

Compute
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Provider
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Financial
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Financial
Service Provider

discover discover

negotiate

negotiate
negotiate

feed data

deploy softwarefeed IV
data

Figure 4. The Implied Volatility Framework

A Financial Customer is interested in retrieving a continuous data feed con-
taining their interested information. To achieve this, it starts with discovering
a service, providing this capability. This is done using the above described
UDAP discovery facility. Afterwards, the customer retrieved a list of Financial
service providers, which could be ranked by contacting the Evaluation system
(not shown in the diagram). This uses prior agreed and tracked SLAs to rank
the provided list. After choosing one Financial Service Provider, the customer
needs to establish a SLA with this provider by contacting its negotiator part.
This will - if a SLA is established - check, if additional compute and/or data
resources are required for fulfilling the requirements of the Financial Customer
and will negotiate new Compute and Data Providers by discovering via UDAP
and negotiate with the Negotiator Components of the providers. New com-
pute resources need to have the software, which will be used afterwards, which
means the software must be deployed in a way that it could be used. Afterwards,
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the Data Provider could support the Compute Provider with required data for
computing the Financial Customer required data feed.

4.1 Architectural Components
The Financial Customer is interested in an Implied Volatility data feed,

which is provided by a Financial Service Provider. Therefore the customer first
needs to discover a suitable Financial Service Provider using UDAP and then
negotiate an SLA with the provider to agree upon the service level.

UDAP, as described in Section 3.2, provides two functions for our system:
(i) discovery of different service types and (ii) the tracking of an SLA.

The Financial Service Provider requires compute and data resources to
provide the Implied Volatility service (or other financial services). Both of
them have to be discovered from UDAP and afterwards an SLA has to be
negotiated with the Compute and the Data provider respectively.

A Data Provider provides a data feed which is the foundation for the Implied
Volatility calculation.

A Compute Provider provides resources for computing the Implied Volatil-
ity data feed out of the data feed provided by a Data Provider.

4.2 Dynamic (Re-)Allocation
Normally the failure of a compute resource implies that the SLA between

the Financial Service Provider and the Financial Customer is breached. In our
architecture, the Financial Service Provider could - after detecting the failure
- simply discover new compute resources with the help of UDAP, negotiate
with the respective Compute Provider, and set up the machine by deploying the
necessary software. Afterwards this compute resource replaces the old one, the
Implied Volatility data feed is re-connected and the negotiated SLA with the
Financial Customer has not been breached (in case the re-allocation was fast
enough to provide the agrees QoS level).

5. Related Work
Apart from NextGRID a number of other projects is doing research in the

area of Service Level Agreements in business-oriented Grid environments. As-
sessGrid, for example, introduces risk assessment and management to SLA ne-
gotiation [5], implementing, contrary to NextGRID, the WS-Agreement spec-
ification [1]. The same specification has been used by the Japanese Business
Grid which provided solutions to share IT resources based on SLAs among dis-
tributed centres in an enterprise and trusted partners’ data centres, thus making it
possible for an Application Service Provider to dispatch a complex job through
a single portal [7]. The reason for NextGRID not to use WS-Agreement, which
combines a vocabulary for SLAs and a protocol to offer and negotiate them, are
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the project’s requirements regarding the SLA vocabulary. NextGRID supports
the concept of self-similar SLAs [8], but WS-Agreement does not, although
the protocols of both approaches are the same. The BREIN [2] project, on the
other hand, develops solution based on the NextGRID SLA Framework and is
therefore examined closer in the following section.

5.1 BREIN
BREIN [2] aims at realising flexible Virtual Organisation support to reduce

the complexity of business-to-business collaborations. As already mentioned in
Chapter 3.1, NextGRID concentrates on the conceptualisation of the framework,
delivering reference implementations of selected parts of the framework. In the
BREIN project, conceptual ideas of a set of projects (including NextGRID)
have been taken up to develop an initial design of a prototype implementation
of an “intelligent” negotiation framework.

In contrast to the NextGRID approach, BREIN wants to support a multiphase
negotiation protocol. The customer sends an offer to the Service Provider
Negotiator, which extracts the offer parameters and hands them over to an
optimisation component. This optimisation component retrieves the business
goals/business criteria of the Service Provider and the capability information
for the resources as well as their availabilities. Based on this information, the
optimisation component refines the parameters, hands them back to the Service
Provider Negotiator, which then sends a counter-offer to the Service Customer.
To automate these functionalities, BREIN will make usage of technologies and
concepts from the Semantic Web and multi-agent area. At the point in time of
writing this paper, the prototyping activity was not finished yet, which means
that the presented approach is only a snapshot of the current status.

6. Status and Future Perspectives
In the course of this paper we described a business scenario, the provision of

Implied Volatility services, which is used in the NextGRID project to drive the
architectural development and to evaluate prototype developments. This sce-
nario has been implemented integrating and enhancing NextGRID components,
notably the NextGRID SLA Framework and UDAP (plus some auxiliary ser-
vices that are of minor importance to this work). The resulting Implied Volatility
Framework underpins the benefit of dynamic SLA negotiation to the actors in-
volved in the business scenario. It is planned to demonstrate the function of
the framework at different occasions. Moreover, the uptake of the concepts
and prototype implementations by other projects like BREIN is ongoing work
which will lead to more complete and advanced implementations of what has
been presented here.



Improving Business Opportunities of Financial Service Providers 407

Acknowledgments
This work has been supported by the NextGRID project and has been partly

funded by the European Commission’s IST activity of the 6th Framework Pro-
gramme under contract number 511563. In addition, this work has been sup-
ported by the BREIN project (http://www.gridsforbusiness.eu) and has been
partly funded by the European Commission’s IST activity of the 6th Frame-
work Programme under contract number 034556. This paper expresses the
opinions of the authors and not necessarily those of the European Commission.
The European Commission is not liable for any use that may be made of the
information contained in this paper.

References
[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,

J. Rofrano, S. Tuecke, and M. Xu. WS-Agreement - Web Services Agreement Specifica-
tion. Technical report, Open Grid Forum, May 2007. Grid Forum Document GFD.107.

[2] BREIN – Business objective driven reliable and intelligent grids for real business, 2007.
Web site, 16 Jun 2007 <http://www.eu-brein.com/>.

[3] P. Hasselmeyer, H. Mersch, H.-N. Quyen, L. Schubert, B. Koller, and Ph. Wieder. Im-
plementing an SLA Negotiation Framework. In Proc. of the eChallenges Conference
(e-2007), The Hague, The Netherlands, October 24–26, 2007. To appear.

[4] P. Hasselmeyer, L. Schubert, B. Koller, and Ph. Wieder. Towards SLA-supported Re-
source Management. In Proc. of the 2006 International Conference on High Performance
Computing and Communications (HPCC-06), 4208, pages 743–752. Springer, 2006.

[5] M. Hovestadt, O. Kao, and K. Voss. The First Step of Introducing Risk Management
for Preprocessing SLA. In Proc. of the IEEE International Conference on Services and
Computing 2006 (SCC’06), pages 36–43. IEEE Computer Society, 2006.

[6] J. Lee and R. Ben-Natan. Integrating Service Level Agreements: Optimizing Your OSS for
SLA Delivery. Wiley, 2002.
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1. Introduction
Service Level Agreements (SLAs) are an integral part towards the commer-

cial uptake of Grids in industry. A paying user of the Grid needs assurances
that jobs are processed according to negotiated procedures and requires finan-
cial compensation in case these are violated. Otherwise business users will
not be willing to give critical jobs to external resource providers, knowing that
the fate of their business is given to the arbitrariness of a possibly unknown
resource provider. The WS-Agreement specification [1] serves this purpose
and went into recommendation status recently. This paper presents early ex-
periences with implementing a negotiation service with WS-Agreement using
the Globus Toolkit 4.0. It shows the advantages of building upon the Globus
Toolkit but also the disadvantages of this choice. Our implementation was and
is being developed within the AssessGrid project. A detailed description of
the architecture shall give the reader some insight whether our implementation
might serve as a basis for their work. The implementation is available at the
AssessGrid website [2]. This paper addresses only the negotiation component.
For the broader picture or more details of AssessGrid, please refer to [2].

As mentioned before, the purpose of WS-Agreement is to facilitate the ne-
gotiation of SLAs. The specification follows the WS-Resource Factory Pattern.
A WS-AgreementFactory is responsible for creating new SLAs that are repre-
sented by WS-Agreement resources. Once created, a WS-Agreement resource
provides access to the state information of the agreement. An agreement con-
sists of context information and agreement terms. While the context defines
information such as participating parties, agreement terms describe the nego-
tiated terms of the agreement. Since these are domain specific, they are not
subject of this paper. The agreement template data structure is an extension of
agreements. It comprises additional creation constraints that help the user by
pointing to locations in the template that may be modified and inform him or
her about possible values that may be defined in the SLA (e.g. maximum CPU
speed that can be requested from a certain provider).

The open source community provides several solutions for implementing a
specification such as the WS-Agreement. Among these is Apache Axis2/Java,
a recent development within the Apache Software Foundation to implement
SOAP. Add-ons such as Apache Sandesha2, Kandula2, and Rampart provide
implementations for WS-ReliableMessaging, WS-Coordination, and WS-Se-
curity. Apache Muse represents a framework based on Axis2/Java that provides
WS-ResourceFramework 1.2, WS-Notification 1.3, WS-DistributedManage-
ment 1.1, and WS-MetadataExchange. The WSAG4J [3] implementation of
WS-Agreement is based on this software stack.

A different approach that is presented in this paper uses the infrastructure
provided by the Globus Toolkit 4.0. This has several advantages but certain
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disadvantages as well. A major benefit of relying on the Globus Toolkit is the
software ecosystem that grew around it and therefore the scale of the community
reached. The Globus Toolkit itself provides a plentitude of useful services;
among these are authentication, authorization, credential delegation, GridFTP,
the Monitoring and Discovery System (MDS), WS-Notification, and others. At
the same time, external projects like the GridSphere portal framework support
the development of a front-end.

A decision in favor of the Globus Toolkit brings, however, several disadvan-
tages that should not be concealed. The Globus Toolkit 4.0 is based on Apache
Axis 1.2RC2, which does not support XML Schema Substitution Groups nor
choice-elements whose maxOccurs attribute is set to “unbounded”. Tiny modi-
fications to the WS-Agreement WSDL files allow Axis 1.2RC2 to handle these
parts without losing compatibility to other implementations. On the other hand,
the Globus Toolkit 4.0 uses different versions of WS-Addressing and WS-Re-
sourceFramework than required by WS-Agreement. This prevents full com-
pliance to the WS-Agreement specification and makes interoperability with
WS-Agreement compliant implementations difficult. Efforts exist in the GT
community to update to the new versions and by the OGF GRAAP group to
write a translation proxy between our implementation and WSAG4J.

Therefore, at the moment, one has to decide between using the Globus Toolkit
with all services provided by the toolkit and the community on the one hand
and full WS-Agreement compliance on the other hand. Grid Sphere and Grid-
FTP were some of the reasons for the AssessGrid project to pick the Globus
Toolkit approach. Once the Globus Toolkit picks up the required versions of
WS-Addressing and WS-ResourceFramework, interoperability issues should
be solved—at least on the protocol layer.

After this short summary of advantages and disadvantages of using the
Globus Toolkit, section 2 addresses the negotiation protocol assumed in our
implementation. Section 3 then describes the architecture arisen from this.
Section 4 addresses related work and section 5 concludes the paper.

2. Negotiation Protocol
The WS-Agreement protocol is very limited for negotiation, basically re-

sembling a one-phase commit protocol. This is unfortunately insufficient for
AssessGrid. The project considers three different parties, an end-user, who is
interested in the consumption of compute resources, a resource broker, and a
resource provider. We will not consider the AssessGrid specific tasks of the
broker but regard it as a common broker here whose tasks are finding suitable
resources and handling workflows.

Three different usage scenarios are subject of the AssessGrid project. Gen-
eralized these are:
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Scenario 1 – Direct SLA negotiation with provider: In the simplest scenar-
io, an end-user negotiates an SLA directly with a known suitable resource
provider. A broker is not involved in this negotiation.

Scenario 2 – Broker as intermediary: In this case, the end-user submits an
SLA request to the broker, which then looks for suitable resources and
forwards the request to suitable providers. The broker returns the SLA
offers to the end-user, ranked by price, penalty, or some other domain
specific criteria. The end-user is then free to select and commit to an
SLA offer by interacting directly with the corresponding provider.

Scenario 3 – Broker as a higher-level provider: The broker can act as a vir-
tual provider. In that case, the end-user agrees an SLA with the broker,
which in turn agrees SLAs with all providers involved in executing the
end-user’s application. The broker can be used to map entire workflows
to resources.

From these scenarios we can conclude that the current negotiation interface
of WS-Agreement does not satisfy our needs. Currently a resource consumer
issues an SLA request to a resource provider. By this act, the consumer is
already committed to the request. The provider can only accept or reject the
request. This has certain shortcomings presented in the following:
It is common real-world practice that a customer asks several companies for
offers for a particular job. The companies state their price and the customer
can pick the cheapest offer. This is not possible in the current WS-Agreement
specification. By submitting an SLA request, the user is committed to that
request. At the moment, we neglect this assumption. A user can submit a
non-binding SLA request and the provider is allowed to modify the request by
answering with an SLA offer that has a price tag. The provider is bound to this
offer and the user can either commit to the offer or let it expire. Even though
this is common among several implementations (see section 4) the GRAAP
group has strong arguments against it (scalability and byzantine faults of the
Internet environment, see e.g. [4]). Therefore, the approach will be changed in
the future.

3. Architecture
Figure 1 presents a high level view of the NegotiationManager (NegMgr),

the service implementing WS-Agreement, on top of a resource management
system. The consumer of this negotiation service can be either an end-user
interface, such as a portal or command line tools, or even a broker service. The
consumer accesses the NegMgr over the WS-Agreement interface for creating
or negotiating new SLAs and checking the status of existing SLAs.
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Figure 1. High level component architecture

WS-Notification allows to monitor all kind of changes. A broker might be
interested in keeping a cache of offered SLA templates from providers and might
therefore subscribe to a provider’s templates. An end user might monitor the
status of its SLAs to get notified when a job finishes. Similarly a broker might
monitor SLAs of the subtasks of a workflow to trigger the creation of new ones
for following tasks or reacting upon failures. Furthermore, state information
can be requested by WS-ResourceFramework means at any time.

Besides the mentioned implementations of WS-Agreement, WS-Notifica-
tion, and WS-ResourceFramework, we have extended the interface by logging
mechanisms that allow a user to see time-stamped human readable log messages
and by a commit method because of the altered commit protocol.

The architecture is depicted in more detail in figure 2. The figure shows
components with gray and white background. Gray components are generic
while white components carry the domain specific logic. The components are
described in the following paragraphs.

Similarly to WSAG4J, we have implemented two services, AgreementFac-
tory and Agreement, that delegate the business logic to concrete implementation
classes. In terms of design patterns, these are strategy implementations. The
concrete AgreementFactory makes use of two components, one being the Tem-
plateStore, the other one being the DecisionProcess, a component to decide
whether an agreement request is valid.

The TemplateStore is responsible for the persistence of templates. Our WS-
Agreement implementation assumes that templates are static and do not depend
on runtime information. The WS-ResourceFramework offers means to add new
templates to the database while using the authentication and authorization ser-
vices offered by the Globus Toolkit. This was realized by implementing a
new org.globus.wsrf.impl.BaseResourceProperty extension. The Agreement-
Factory can delegate most work in this regard to the TemplateStore.

Task of the DecisionProcess component is to validate agreement requests.
An SLA request is valid if it fulfills the requirements of the WS-Agreement
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Figure 2. Detailed component architecture

specification and conforms to the template it originated from. While WS-Agree-
ment compliance tests are rather easy to implement, the test for compliance to
creation constraints is rather difficult. Each creation constraint of an agreement
template consists of an XPath expression filtering some nodes and the actual
constraint description (wsag:ItemConstraint). Free-form constraints are not
supported at the moment. Two challenges arise from the definition of the
creation constraints. First the XPath evaluation is difficult because Globus/Axis
generates Java Beans that are derived from the SOAP messages. In the process
of generating these Java Beans, the entire XML context is lost, and therewith also
the binding of namespace prefixes that are used in the XPath expressions. For
that reason, our implementation assumes fixed bindings of namespace prefixes.
The second challenge originates from the problem of XML Schema validation.
The wsag:ItemConstraints use a subset of XML Schema to restrict possible
values. As these are quite difficult to handle thoroughly, currently only a small
subset is supported: Minimum and maximum bounds of numbers, enumerations
and correct date/time formats are checked.

If an SLA request has been found to be template compliant, it is passed to the
resource management system for finding a decision whether to make an SLA
offer and determining the price tag. Our project uses OpenCCS, a planning
based scheduler, for this process. The job is integrated into a tentative schedule
which forms the decision base. In case the job fits into the schedule and no
previously agreed SLAs need to be violated, an offer is generated.

So far we have implicitly assumed that an SLA consists merely of a con-
junction of requirements that need to be fulfilled. WS-Agreement provides,
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however, means to specify alternative ways to fulfill an agreement (e.g. many
CPUs for a short time or few CPUs for a long time). Such alternatives can be
described by statements of logical and-, or-, and xor-expressions. This is not
supported at the moment, but can be handled in the future by converting the
expressions into disjunctive normal form and evaluating each one individually.

We have seen that the creation of an agreement and the decision whether
to create it are handled completely by the AgreementFactory and the resource
management system. The right hand side of figure 2 describes the life-time
handling of an agreement which is subject of the following paragraphs.

In principle it would be great to use the WS-GRAM implementation of
Globus to process jobs. It is widely tested and there are plenty of backends for
WS-GRAM. However, WS-GRAM does not appear suitable for a scenario with
SLAs for two reasons. First, it is implemented for queueing based schedulers for
which it is difficult to provide guarantees. In particular, users will be interested
in deadlines for the job completion, which are difficult to support in queueing
based systems. The second shortcoming of WS-GRAM relates to the fact that an
SLA needs to terminate in one of three states: Completed, violated by provider,
or violated by consumer. Finding the cause of a violation is not supported
sufficiently by WS-GRAM.

We substitute WS-GRAM by a new state machine that models a Moore
automata. The state machine is composed of states, transitions, and actions.
Associated to each state is a (possibly empty) set of actions that are executed
when entering the state. A state can handle several events that cause the tran-
sition to a new (possible identical) state. Each exception that can be thrown by
an event handler or an action has a destination state attached. In case such an
exception is raised, the state machine moves into this state. That way, each error
is either compensated or leads to a final state that indicates the party responsible
for an SLA violation.

As we use planning based schedulers, events need to be triggered at certain
times. For example file staging needs to begin at the time specified in the SLA.
This is another shortcoming of WS-GRAM. A TimerService is responsible in
our implementation for generating such timer events.

A job consists—as in WS-GRAM—of stage in, execution, stage out, and
cleanup. The difference is that the stage-in, the beginning of the execution, and
the cleanup phase are triggered at certain times. Stage-out begins immediately
after the execution has finished.

The points in time when certain phases begin are defined in the SLA. The
SLAs used in our project define time boundaries as depicted in figure 3. First,
the SLA defines at what time the resource consumer guarantees to provide
stage-in files. At this time, the resource provider starts the stage-in procedure.
Furthermore, the consumer specifies when the job can start earliest, when it
has to finish latest, and how much CPU (wall clock) time it requires. When



416 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

Time
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Figure 3. Life Cycle of an SLA

specifying the earliest start time, the consumer needs to provide sufficient time
for the stage-in. Determining an adequate timeslot for this from the provider is
non-trivial and out of our project’s scope. The interval between earliest start and
latest finish time may provide some slack time that can be used by the provider
for fault-tolerance mechanisms such as checkpointing. Finally, the stage out is
triggered directly after the job finishes. Files are kept until a negotiated cleanup
time.

3.1 Security and Roles
So far we have been oblivious to any security aspects. Most security aspects

are handled in the generic AgreementFactory and Agreement web services.
We have identified four different roles with different privileges. These roles are
described in the following and summarized in table 1. Each row is dedicated
to one role. The first three columns identify the user who takes these roles in
each of the three scenarios discussed before. The final four columns describe
the rights that are associated to the roles.

An administrator has read and write access to everything. A person belongs
to the group of administrators if his or her distinguished name is listed in a
specific gridmap file. The SLA creator is the identity who creates the SLA
by calling createAgreement at the AgreementFactory. This can be the service
consumer (in scenario 1), a broker who requests SLA offers on behalf of a
prospective service consumer (scenario 2), or a broker who requests SLA offers
in order to act as a virtual provider (scenario 3). The SLA creator role is not
sufficient to actually establish the agreement by committing to it. The only
person who is allowed to commit to the SLA is the SLA owner, whose identity
is explicitly listed in the SLA. As committing to an SLA brings several legal
responsibilities, this differentiation is very important. Finally, in case a resource
broker acts as a virtual service provider, we need the role of a service user. This
role grants access to the services or resources covered by the SLA.
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Table 1. Roles and privileges.

Scen. 1 Scen. 2 Scen. 3 Role Read Commit Terminate Access to
status resources

Admin. X X X X
End User Broker Broker Creator X
End User End User Broker Owner X X X X
End User End User Broker User X X

Other

3.2 SLA Fulfillment
A final topic to be discussed here is the question who is responsible for an

SLA violation. Our concept may be not optimal but quite pragmatic. The first
rule is that the first detected violation of a guarantee is considered as the cause
for a failed SLA and determines who has to pay a penalty. In case the SLA
fails, only one penalty is paid but no reward. As it is difficult to find the cause
of an SLA violation—it can be a hardware or software failure—the following
rule is used: If the provider did not allocate the resources on time or any part
of the resources failed and it could not be resolved through fault-tolerance
mechanisms, the provider is liable for the failure. It may be that no resource
failure is detected, e.g. when a violation is caused by a software problem. In
this case the simplifying assumption is that this is the end-user’s fault.

This approach follows common practice in insurance industry. If the cause
of an accident appears obvious, this is considered the true cause (ostensible
evidence). If any party disagrees, an independent expert in the field is asked to
investigate the situation and the dispute is solved in court. In order to realize
this in a Grid context, providers need to be certified that they keep auditable
(unmodifiable) logs and allow external investigators to check the equipment at
any time without prior notice. This is, however, not part of our current research.
A perfect and automated decision process cannot be found because it requires
provable correct hardware and software.

4. Related Work
Our WS-Agreement implementation has been developed within the Assess-

Grid project [2]. Currently the only other public and actively developed WS-
Agreement implementation known to the authors is WSAG4J [3] by Wäldrich.
As mentioned above, it is based on Axis2/Java and is therefore capable of stick-
ing closer to the WS-Agreement specification while being not native to the
Globus Toolkit ecosystem. The Cremona implementation [5] was developed
within the IBM Emerging Technologies Toolkit and builds on an earlier version
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of WS-Agreement. However, the source codes are closed and no updates have
been published for more than one year. Mobach et al. describe in [6] the use of
WS-Agreement for mobile agents. [3] and [6] use or support a request-offer-
commit protocol as our implementation. Interoperability tests are planed for
the near future between our implementation, WSAG4J, and an implementation
by the SORMA project [7].

5. Conclusion
Within this paper we have argued why service level agreements are impor-

tant for the commercial update of the Grid. We have presented the advantages
and disadvantages of implementing a WS-Agreement negotiation service with
the Globus Toolkit. We have shown the current shortcoming of the negotiation
protocol assumed by WS-Agreement and how this is addressed. Based on this
we have presented our implementation and how it makes use of the services pro-
vided by the Globus Toolkit. We have described our process to decide whether
to accept SLA requests and how computational jobs described by these SLAs
are processed during their lifetime. Finally, security aspects were described.

We invite everybody to take a look at our implementation, which is available
on the AssessGrid website [2].
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